Introdução à Estatística Júlio Cesar de C. Balieiro 1

Alguns Conceitos

✓ População

- É o conjunto de elementos com pelo menos uma característica em comum.
- Esta característica comum deve delimitar claramente quais os elementos que pertencem à população e quais os elementos que não pertencem.

✓ Amostra

 É um subconjunto de uma população, onde todos os seus elementos serão examinados para efeito da realização do estudo estatístico desejado.

3

Alguns Conceitos

✓ OBJETIVO DA ESTATÍSTICA: "tirar conclusões sobre populações com base nos resultados observados em amostras extraídas dessas populações".

✓ Variável

- É a característica dos elementos da amostra que nos interessa averiguar estatisticamente.
- Ex.: variável <u>Idade</u> se houver "n" elementos fisicamente considerados no estudo, esses elementos fornecerão "n" valores da variável idade, os quais serão tratados convenientemente pela Estatística Descritiva e/ou pela Estatística Inferencial.

Tipos de Variáveis

As variáveis de interesse podem ser classificadas em:

- (i) Qualitativas => quando resultar de uma classificação por tipos ou atributos.
- (ii) Quantitativas => quando seus valores forem expressos em números. Podem ser subdivididas:
 - (a) Discretas;
 - (b) Contínuas.

5

Tipos de Variáveis

(a) Variáveis Quantitativas Discretas

Assumem apenas valores pertencentes a um conjunto enumerável. São obtidos mediante alguma forma de contagem.

Exemplos de Discretas:

- População: Ovinos da raça Santa Inês da ASCCO;
 Variável: número de cordeiros ao parto (1, 2 ou 3).
- População: Bovinos Nelore da Agro-pecuária CFM Ltda. Variável: Escores de Musculosidade (1, 2, 3, 4 ou 5).
- População: Bovinos Nelore da Agro-pecuária CFM Ltda.
 Variável: Prenhez aos 14 meses de idade (0 ou 1).

Tipos de Variáveis

(b) Variáveis Quantitativas Contínuas

São aquelas, teoricamente, que podem assumir qualquer valor em um certo intervalo de variação. Resultam, em geral, de uma medição, sendo freqüentemente expressos em alguma unidade.

Exemplos de Contínuas:

- População: Bovinos Nelore da Agro-pecuária CFM Ltda.
 Variável: PN (28,0; 28,5; 30,2; 32,58)
- População: Bovinos Nelore da Agro-pecuária CFM Ltda.
 Variável: Peso aos 18 meses, em kg (250,0 até 415,0 kg)

7

Características Numéricas de uma Distribuição de Dados

Júlio Cesar de C. Balieiro

Introdução

- As vezes é necessário resumir certas características das distribuições de dados (ou mesmo de freqüências dados) por meio de certas quantidades.
- ✓ Tais quantidades são usualmente denominadas de MEDIDAS, por quantificarem alguns aspectos de nosso interesse.
- ✓ Nosso objetivo é apresentar algumas das chamadas MEDIDAS DE POSIÇÃO, bem como, algumas MEDIDAS DE DISPERSÃO, consideradas mais importantes no campo da aplicabilidade prática do nosso dia a dia.
- ✓ Tais medidas servem para:
 - (a) Localizar uma distribuição;
 - (b) Caracterizar sua variabilidade.

9

Medidas de Posição (ou de Tendência Central)

- ✓ Servem para localizar a distribuição dos dados brutos (ou das freqüências) sobre o eixo de variação da variável em questão.
- ✓ Veremos os três tipos principais de medidas de posição;
 - (a) Média Aritmética;
 - (b) Mediana;
 - (c) Moda.

- ✓ Média (Aritmética)
- A notação internacional recomenda símbolos específicos para a Média:
 - (a) AMOSTRA:

Conjunto de Dados =>
$$\bar{\mathbf{x}} = \hat{\mu} = \hat{\mathbf{m}} = \frac{\sum\limits_{i=1}^{n} X_i}{n}$$

Tabelas de Frequência =>
$$\bar{\mathbf{x}} = \hat{\mu} = \hat{\mathbf{m}} = \frac{\sum\limits_{i=1}^k X_i f_i}{n} = \sum\limits_{i=1}^k X_i p_i$$

11

Medidas de Posição (ou de Tendência Central)

✓ Média (Aritmética)

(b) ROPULAÇÃO:

Conjunto de Dados =>
$$\mu = m = \frac{\sum\limits_{i=1}^{n} X_i}{n}$$

Tabela de Frequência =>
$$\mu = m = \frac{\sum\limits_{i=1}^{k} X_i f_i}{n} = \sum\limits_{i=1}^{k} X_i p_i$$

Exemplo 2: 50 determinações do tempo (em segundos) gasto por um funcionário

Classes (limites reais)	f_i matrix	x_i	$x_i f_i$
39,5 — 44,5	3	42	126
44,5 — 49,5	8 diam'r	47	376
49,5 — 54,5	16	52	832
54,5 — 59,5	12	57	684
59,5 — 64,5	7	62	434
64,5 — 69,5	3	67	201
69,5 — 74,5	1	72	72
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50	Ge 49 1.	2.725

$$\overline{\mathbf{x}} = \hat{\mu} = \hat{\mathbf{m}} = \frac{\sum_{i=1}^{k} X_i f_i}{n} = \frac{2.725}{50} = 54,5$$

13

Medidas de Posição (ou de Tendência Central)

- ✓ Propriedades da Média
 - (a) Multiplicando todos os valores de uma variável por uma constante, a média do conjunto fica multiplicada por essa constante.
 - **(b)** Somando-se ou subtraindo-se uma constante a todos os valores da variável, a média do conjunto fica acrescida ou subtraída dessa constante.

✓ Mediana

- => A mediana é uma quantidade que, como a média, também caracteriza o centro de uma distribuição pertencente a um conjunto de dados.
 - (a) AMOSTRA: md
 - (b) POPULAÇÃO: md

15

Medidas de Posição (ou de Tendência Central)

Conjunto de Dados: Para obtenção da estimativa de

mediana de um conjunto de dados são necessários os seguintes passos:

1º Passo: Ordenar de forma crescente os "n" valores da

vakiável em questão;

2º Passo: (i) Sendo "n" ímpar, a mediana será igual ao valor

de ordem (n+1);

(ii) Sendo "n" par, a mediana será o valor médio entre os valores de ordem $\frac{n}{2}$ e $\frac{n}{2}+1$.

✓ Mediana

Tabelas de Freqüência =>
$$\hat{m}d = L_{\rm I} + \frac{(n/2) - F_a}{f_{md}} h_{md}$$

 L_i = limite inferior da classe que contém a mediana;

n = números de elementos do conjunto da dados;

 F_a = soma das freqüências das classes anteriores que contém a mediana;

 f_{md} = frequên¢ia da classe que contém a mediana;

 h_{md} = amplitude da classe que contém a mediana.

17

Medidas de Posição (ou de Tendência Central)

✓ Mediana

Exemplo 2: 50 determinações do tempo (em segundos) gasto por um funcionário

	Classes (limites reais)	f_i	X _i	$x_i f_i$
ediana:	39,5 — 44,5	3	42	126
	44,5 — 49,5	sacibe8 an	47	376
The Section	49,5 — 54,5	16	52	832
iv pado gara	54,5 — 59,5	12	57	684
dismensione	59,5 — 64,5	7	62	434
Section 1	64,5 — 69,5	3	67	201
and the second	69,5 — 74,5	1	72	72
Section 1	to being 278.6	50	State Section	2.725

$$\hat{m}d = L_i + \frac{(n/2) - F_a}{f_{md}} h_{md}$$

$$L_i = 49$$
, 5; $n = 50$; $F_a = 11$; $f_{md} = 16$; $h_{md} = 5$.

✓ Mediana

Exemplo 2: 50 determinações do tempo (em segundos) gasto por um funcionário

$$\hat{m}d = L_i + \frac{(n/2) - F_a}{f_{md}} h_{md}$$

$$\hat{m}d = L_i + \frac{(n/2) - F_a}{f_{md}} h_{md}$$

$$\hat{m}d = 49.5 + \frac{(50/2) - 11}{16}.5 = 53,875$$

10

Medidas de Posição (ou de Tendência Central)

✓ Moda

- A moda (ou modas) de um conjunto de valores é definida como o valor (ou valores) de máxima frequência.
- => É uma quantidade que, como a média, também caracteriza o centro de uma distribuição, indicando a região das máximas freqüências.
 - (a) AMOSTRA: \hat{m}_{o}
 - (b) POPULAÇÃO: m_o

✓ Moda

Tabelas de Freqüência => $\hat{m}_o = L_{\rm i} + \frac{d_1}{d_1 + d_2} h$

 L_i = limite inferior da classe modal;

 d_1 = diferença entre a classe modal e a da classe imediatamente anterior;

d₂ = diferença entre a classe modal e a da classe imediatamente seguinte;

h = amplitude das classes.

21

Medidas de Posição (ou de Tendência Central)

✓ Moda

Exemplo 2: 50 determinações do tempo (em segundos) gasto por um funcionário

Classes (limites reais)	f_i	x_i	$x_i f_i$
39,5 — 44,5	3	42	126
44,5 — 49,5	sa iBediare	47	376
49,5 — 54,5	16	52	832
54,5 — 59,5	12	57	684
59,5 — 64,5	7	62	434
64,5 — 69,5	3	67	201
69,5 — 74,5	1	72	72
ofe femos ATA	50	se Physhia	2.725

$$\hat{m}_o = L_i + \frac{d_1}{d_1 + d_2} h$$

$$L_i = 49.5$$
; $d_1 = 16 - 8 = 8$; $d_2 = 16 - 12 = 4$; $h = 5$.

Introdução à Estatística

✓ Moda

Exemplo 2: 50 determinações do tempo (em segundos) gasto por um funcionário

$$\hat{m}_o = L_i + \frac{d_1}{d_1 + d_2}h$$

$$\hat{m}_o = 49.5 + \frac{8}{8+4}.5 = 52,833$$

23

Medidas de Dispersão (ou de Variabilidade)

- A informação fornecida pelas Medidas de Posição em geral necessitam de ser complementas pelas Medidas de Dispersão.
- ✓ As Medidas de Dispersão servem para indicar o "quanto os dados se apresentam dispersos em torno da região central".
- ✓ Portanto caracterizam o grau de variação existente em um conjunto de valores.
- ✓ As Medidas de Dispersão que mais nos interessam são:
 - (a) Amplitude;
 - (b) Variancia;
 - (c) Desvio Padrão;
 - (d) Coeficiente de Variação.

✓ Amplitude

- => A amplitude, já mencionada, é definida como a diferença entre o maior e o menor valores do conjunto de dados.
 - (a) AMOSTRA: $\hat{R} = X_{MAX} X_{MIN}$
 - (b) POPULAÇÃO: $R = X_{MAX} X_{MIN}$
- => Vantagem e Desvantagem.
- => Salvo aplicações de Controle de Qualidade, a amplitude não é muito utilizada como Medida de Dispersão.

25

Medidas de Dispersão (ou de Variabilidade)

✓ Variância

- => A variância é definida como a "média dos quadrados das diferenças entre os valores em relação a sua própria média".
 - (a) AMOSTRA: $S^2 = S_x^2 = S^2(X) = \hat{\sigma}^2 = \hat{\sigma}^2(X) = \hat{\sigma}_X^2$
 - (b) POPULAÇÃO: $\sigma^2 = \sigma^2(X) = \sigma_X^2$
- => Em se tratando de Amostra:

Conjunto de Dados =>
$$S^2(X) = S_X^2 = \frac{\sum\limits_{i=1}^n (X_i - \overline{X})^2}{N-1}$$

Tabela de Frequência => $S^2(X) = S_X^2 = \frac{\sum\limits_{i=1}^{\kappa}(X_i - \overline{X})^2 f_i}{N-1}$ 26

✓ Variância

=> Em se tratando de População:

OBS:

(i) A variância calculada para dados agrupados deverá ser superestimada em relação à variância exata dos "N" dados originais.

27

Medidas de Dispersão (ou de Variabilidade)

✓ Variância

Exemplo: Executar o cálculo da variância de um conjunto pequeno de dados, formado pelos valores seguinte; {15, 12, 10, 17, 16}

É fácil ver que:
$$\overline{x} = \hat{\mu} = \hat{m} = \frac{\sum_{i=1}^{n} X_i}{N} = 14$$

Logo:
$$S^{2}(X) = S_{X}^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{N-1}$$

Poderemos montar a seguinte Tabela Auxiliar nos cálculos:

✓ Variância

Exemplo: Cálculo da variância de um conjunto pequeno de dados: {15, 12, 10, 17, 16}

x_i	$X_i - \overline{X}$	$(x_i - \overline{x})^2$
15	1	1
12	-2	4
10	-4	16
17	3	9
16	2	4
	12-2	34

$$S^{2}(X) = S_{X}^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{N-1}$$

$$S^2(X) = S_X^2 = \frac{34}{4} = 8,5$$

Nota-se que as expressões apresentadas **não são as mais apropriadas** para o cálculo da variância, pois a média é quase sempre um **valor fracionário**, o que viria a dificultar o cálculo dos desvios $(X_i - \overline{X})^2$.

Medidas de Dispersão (ou de Variabilidade)

✓ Variância

Note que o numerador pode ser trabalhado: $S^2(X) = S_X^2 \underbrace{\sum_{i=1}^{\Sigma} (X_i - X_i)^2}_{X_i}$

$$\Sigma (X_i - \overline{X})^2 = \Sigma (X_i^2 - 2X_i \overline{X} + \overline{X}^2)$$

$$= \Sigma X_i^2 - 2\overline{X}\Sigma X_i + N\overline{X}^2$$

$$= \Sigma X_i^2 - 2\frac{\Sigma X_i}{N}\Sigma X_i + N\left(\frac{\Sigma X_i}{N}\right)^2$$

$$= \Sigma X_i^2 - 2\frac{(\Sigma X_i)^2}{N} + \frac{(\Sigma X_i)^2}{N}$$

$$\Sigma (X_i - \overline{X})^2 = \Sigma X_i^2 - \frac{(\Sigma X_i)^2}{N}$$

✓ Variância

Assim, para um conjunto com "N" dados:

$$S^{2}(X) = S_{X}^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{N - 1} = \frac{\sum_{i=1}^{n} X_{i}^{2} - \frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{N}}{N - 1}$$

Da mesma\forma, para dados agrupados em **Tabela de freqüência**, teremos:

$$S^{2}(X) = S_{X}^{2} = \frac{\sum_{i=1}^{k} (X_{i} - \overline{X})^{2} f_{i}}{N - 1} = \frac{\sum_{i=1}^{k} X_{i}^{2} f_{i} - \frac{\left(\sum_{i=1}^{k} X_{i} f_{i}\right)^{2}}{N}}{N - 1}$$

31

Medidas de Dispersão (ou de Variabilidade)

✓ Variância

Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário

Classes (limites reais)	Si .	. x ₁	$x_i f_i$	x2.Si
39,5 — 44,5	3	42	126	5.292
44,5 — 49,5	8	47	376	17.672
49,5 — 54,5	16	52	832	43.264
54,5 — 59,5	12	57	684	38.988
59,5 — 64,5	7	62	434	26.908
64,5 — 69,5	3	67	201	13.467
69,5 — 74,5	1	72	72	5.184
. 78812	50	ościudnia	2.725	150.775

$$S^{2}(X) = S_{X}^{2} = \frac{\sum_{i=1}^{k} X_{i}^{2} f_{i} - \left(\frac{\sum_{i=1}^{k} X_{i} f_{i}}{N}\right)^{2}}{N-1} = \frac{150.775 - \frac{(2.725)^{2}}{50}}{49} = 46,17$$
 32

- ✓ Propriedades da Variância
 - (a) Multiplicando-se todos os valores de uma variável por uma constante, a variância do conjunto fica multiplicada pelo quadrado dessa constante.
 - (b) Somando-se ou subtraindo-se uma constante a todos os valores de uma variável, a variância não se altera.
- OBS: (i) A variância é uma medida de dispersão importante na teoria estatística;
 - (ii) Do ponto de vista prático, ela tem o inconveniente de se expressar em unidade quadrática em relação a variável em questão.

Medidas de Dispersão (ou de Variabilidade)

- ✓ Desvio Padrão
- => Definimos desvio padrão como "a raiz quadrada positiva da variância".
- => O cálculo do desvio padrão é feito por meio da variância.
 - (a) AMOSTRA: $S = S_x = S(X) = \hat{\sigma} = \hat{\sigma}(X) = \hat{\sigma}_X$
 - (b) POPULAÇÃO: $\sigma = \sigma(X) = \sigma_X$
- => Em se tratando de **Amostra**: $S(X) = S_X = +\sqrt{S_X^2}$

- ✓ Desvio Padrão
- OBS: (i) O desvio padrão se expressa na mesma unidade da variável, sendo por isso, de maior interesse que a variância nas aplicações práticas;
 - (ii) É mais realístico para efeito de comparação de dispersões.

Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário

$$S^{2}(X) = S_{X}^{2} \frac{\sum_{i=1}^{k} X_{i}^{2} f_{i} - \frac{\left(\sum_{i=1}^{k} X_{i} f_{i}\right)^{2}}{N}}{N-1} = \frac{150.775 - \frac{(2.725)^{2}}{50}}{49} = 46,17$$

$$S(X) = S_{X} = \sqrt{46,17} = 6,79$$

Medidas de Dispersão (ou de Variabilidade)

- ✓ Coeficiente de Variação
- => O coeficiente de variação é definido como "o quociente entre o desvio padrão e a média", sendo frequentemente expresso em porcentagem.

(a) AMOSTRA: $\overrightarrow{CV}(X) = \overrightarrow{CV}_X$

(b) POPULAÇÃO: $CV(X) = CV_X$

=> Em se tratando de Amostra:

$$CV(X) = CV_X = \frac{S_X}{\overline{X}}$$

✓ Coeficiente de Variação

Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário

$$CV(X) = CV_X = \frac{S_X}{\overline{X}}$$

$$C\hat{V}(X) = C\hat{V}_X = \frac{S_X}{\overline{X}} = \frac{6,79}{54,5} = 0,125 = 12,46\%$$

37

Medidas de Dispersão (ou de Variabilidade)

✓ Coeficiente de Variação

OBS: (i) A vantagem é caracterizar a dispersão dos dados em termos relativos ao seu valor médio;

- (ii) Pequena dispersão absoluta pode ser, na verdade considerável, quando comparada com a ordem de grandeza dos valores da variável. Quando consideramos o CV, enganos de interpretações desse tipo não ocorrem;
- (iii) Além disso, por ser adimensional, o CV fornece uma maneira de se compararem as dispersões de variáveis cujas medidas são irredutíveis.

Momentos de uma Distribuição de Dados

Júlio Cesar de C. Balieiro

39

Momentos de uma Distribuição

✓ Alguns conceitos

Definimos o momento de ordem "t" de um conjunto de dados como:

$$M_{t} = \frac{\sum_{i=1}^{n} X_{i}^{t}}{n}$$

Definimos **o momento de ordem "t" centrado** em relação a uma constante "**a**" como:

$$M_t^a = \frac{\sum_{i=1}^n (X_i - a)^t}{n}$$

Momentos de uma Distribuição de Frequências

✓ Alguns conceitos

Já vimos que temos interesse no caso de "momento centrado em relação a média", o qual designaremos simplesmente por "momento centrado", dado por:

$$m_{t} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{t}}{n}$$

Também sabemos que, nos casos da **média** e da **variância**, as expressões podem ser reescritas levando-se em consideração **Tabelas de freqüências** dos diferentes valores existentes.

41

Momentos de uma Distribuição de Frequências

✓ Alguns conceitos

Assim, para dados agrupados em **Tabela de Freqüência**, teremos:

$$M_{t} = \frac{\sum_{i=1}^{k} X_{i}^{t} f_{i}}{n}$$
 => Para momento de ordem "t"

$$M_t^a = \frac{\sum\limits_{i=1}^k (X_i + a)^t f_i}{n}$$
 => Para momento de ordem "t" centrado em relação a uma constante "a"

$$n_{t} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{t} f_{i}}{n}$$
 => Para momento de ordem "*t*" centrado em relação a uma constante "*média*"

Momentos de uma Distribuição de Frequências

√ Alguns conceitos

Nos interessa particularmente saber calcular os **momentos** centrados de terceira e quarta ordem.

$$m_{3} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{t}}{n}$$

$$m_{3} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{3}}{n} = \frac{\sum_{i=1}^{n} X_{i}^{3}}{n} - 3\overline{X} \frac{\sum_{i=1}^{n} X_{i}^{2}}{n} + 2\overline{X}^{3}$$

$$m_{4} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{4}}{n} = \frac{\sum_{i=1}^{n} X_{i}^{4}}{n} - 4\overline{X} \frac{\sum_{i=1}^{n} X_{i}^{3}}{n} + 6\overline{X}^{2} \frac{\sum_{i=1}^{n} X_{i}^{2}}{n} - 3\overline{X}^{4}$$

$$43$$

Momentos de uma Distribuição de Frequências

✓ Alguns conceitos

Havendo **Tabelas de Freqüências com "k"** classes a considerar, as expressões equivalentes são:

$$m_{3} = \frac{\sum_{i=1}^{k} X_{i}^{3} f_{i}}{n} - 3\overline{X} \frac{\sum_{i=1}^{k} X_{i}^{2} f_{i}}{n} + 2\overline{X}^{3}$$

$$m_{4} = \frac{\sum_{i=1}^{n} X_{i}^{4} f_{i}}{n} - 4\overline{X} \frac{\sum_{i=1}^{n} X_{i}^{3} f_{i}}{n} + 6\overline{X}^{2} \frac{\sum_{i=1}^{n} X_{i}^{2} f_{i}}{n} - 3\overline{X}^{4}$$

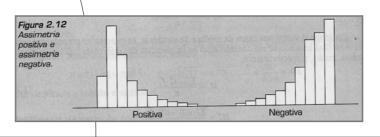
$$44$$

Medidas de Assimetria

Essas medidas procuram caracterizar **como** e **quanto** a distribuição dos Dados(ou freqüências) se afasta da condição de simetria.

Distribuições alongadas a direita são ditas Positivamente Assimétricas.

Distribuições alongadas a esquerda são ditas Negativamente Assimétricas.



45

Medidas de Assimetria

O momento centrado de terceira ordem pode ser usado como medida de assimetria.

Entretanto é mais conveniente a utilização de uma medida adimensional, definida como **Coeficiente de Assimetria**, dado por:

 $a_3 = \frac{m_3}{\left(S_X\right)^3}$

Tabela 2.9 Cálculo da v	ariáncia	MINE SELEC	N SUBSCRIPT TO	b ski y stre
Classes (limites reais)	Si	. x _i	$x_i f_i$	x ² ₁ f ₁
39,5 — 44,5	3	42	126	5.292
44,5 — 49,5	8	47	376	17.672
49,5 — 54,5	16	52	832	43.264
54,5 — 59,5	12	57	684	38.988
59,5 — 64,5	. 7	62	434	26.908
64,5 — 69,5	3	67	201	13.467
69,5 — 74,5	1	72	72	5.184
	50		2.725	150.775

Assim basta criamos uma nova coluna com $X_i^3 f_i$.

E utilizarmos momento centrado de 3ª ordem:

$$m_3 = \frac{\sum_{i=1}^k X_i^3 f_i}{n} - 3\overline{X} \frac{\sum_{i=1}^k X_i^2 f_i}{n} + 2\overline{X}^3 46$$

Medidas de Assimetria

Desta forma, poderemos classificar o **Coeficiente de Assimetria** (a_3) da seguinte forma:

- (i) Se $a_3 = 0$ \Rightarrow a distribuição é Simétrica;
- (ii) Se a₃ > 0 → a distribuição é Assimétrica à direita (Assimetria Positiva);
- (iii) Se a_3 < 0 → a distribuição é **Assimétrica à Esquerda** (Assimetria Negativa).

Fonte: Ferreira D. F. Estatística Básica. Ed. UFLA, 2005. 664 p.

47

48

Medidas de Assimetria

Outra medida de assimetria mais simples pode ser obtido pelo **Índice de Assimetria de** *Pearson*:

$$A = \frac{\overline{X} - \hat{m}_0}{S_X}$$

O **Índice de Assimetria de** *Pearson* também pode ser facilmente classificado:

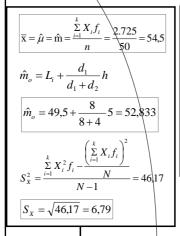
|A| < 0.15 => Distribuição praticamente **Simétrica**;

0,15 < | A | < 1,0 | => Distribuição moderadamente **Assimétrica**;

 $\mid A \mid > 1,0$ => Distribuição fortemente **Assimétrica**.

Medidas de Assimetria

Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário



	Classes (limites reais)	f_i	x_i	$x_i f_i$
encitere	39,5 — 44,5	3	42	126
	44,5 — 49,5	8	47	376
and the state of	49,5 — 54,5	16	52	832
1719200 John Je	54,5 — 59,5	12	57	684
Bisangeralo et e	59,5 — 64,5	7	62	434
	64,5 — 69,5	3	67	201
	69,5 — 74,5	1	72	72
	2333.0	50	- 12 To 1	2.725

$$A = \frac{\overline{X} - \hat{m}_0}{S_X} = \frac{54,5 - 52,833}{6,79} = 0,246$$

Medidas de Assimetria

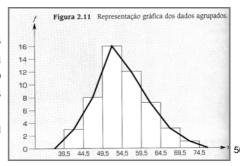
Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário

$$A = \frac{\overline{X} - m_0}{S_x} = \frac{54,5 - 52,833}{6,79} = 0,246$$

Pelo **Índice de Assimetria de Pearson** essa distribuição seria classificada como "**Moderadamente Assimétrica**", pois

$$0,15 < |A| < 1,0$$
.

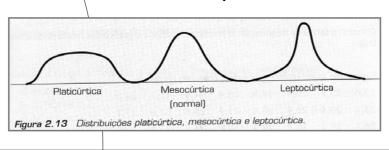
De fato isso ocorre, pois quando utilizados uma Técnica de Descrição Variáveis Quantitativas Contínuas, detectamos a Assimetria Moderada.



Essas medidas procuram caracterizar a forma da distribuição quanto ao seu achatamento.

O termo médio de comparação é dado pela **Distribuição Normal**, que é um modelo teórico de distribuição a ser estudado no capítulo relacionado à Probabilidades.

Quanto ao achatamento, podemos ter as seguintes situações: Platicúrticas, Mesocúrticas e Leptocúrticas.



51

Medidas de Achatamento ou Curtose

A caracterização do achatamento de uma distribuição só tem sentido, em termos práticos, se a distribuição for **aproximadamente Simétrica**.

Entre as possíveis medidas de achatamento, destacamos o **Coeficiente de Curtose**.

O Coeficiente de Curtose é obtido pelo quociente do momento centrado de 4ª ordem pelo quadrado da variância, ou seja:

$$a_4 = \frac{m_4}{(S_X^2)^2} = \frac{m_4}{S_X^4}$$

Trata-se de coeficiente **adimensional**, permitindo a sua classifiçação:

$$a_4 < 3,0$$
 => Dis

=> Distribuição Platicúrtica;

$$a_4 = 3.0$$

=> Distribuição Mesocúrtica;

$$a_4 > 3.0$$

=> Distribuição Leptocúrtica.

53

Medidas de Achatamento ou Curtose

Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário

Tabela 2	.9 Cálculo da variá	incia	m an same and	DESCRIPTION OF	
estra des	Classes (limites reais)	Si	X _i	$x_i f_i$	$x_i^2 f_i$
	39,5 — 44,5	3	42	126	5.292
	44,5 - 49,5	8	47	376	17.672
	49,5 - 54,5	16	52	832	43.264
	54,5 - 59,5	12	57	684	38.988
oter com	59,5 — 64,5	Africa 7 star	62	434	26.908
	64,5 — 69,5	3	67	201	13.467
	69,5 — 74,5	1	72	72	5.184
	"asia	50	obciod/ub	2.725	150.775

Assim, basta criamos duas novas colunas com: $X_i^3 f_i$ e $X_i^4 f_i$.

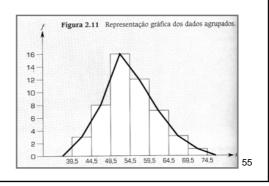
E utilizarmos momento centrado de 4ª ordem:

$$m_{4} = \frac{\sum_{i=1}^{n} X_{i}^{4} f_{i}}{n} - 4\overline{X} \frac{\sum_{i=1}^{n} X_{i}^{3} f_{i}}{n} + 6\overline{X}^{2} \frac{\sum_{i=1}^{n} X_{i}^{2} f_{i}}{n} - 3\overline{X}^{4}$$

Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário

$$a_4 = \frac{m_4}{(S_X^2)^2} = \frac{m_4}{S_X^4} \cong 2,21$$

=> Distribuição ligeiramente Platicúrtica.



Medidas de Achatamento ou Curtose

Outra medida de achatamento mais simples pode ser obtido pelo **Grau de Curtose**, dado pelo coeficiente:

$$K = \frac{Q_3 - Q_1}{2(P_{90} - P_{10})}$$

em que,

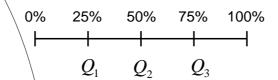
 $Q_3 = \acute{\text{e}} \circ 3^{\circ} \text{Quartil};$

 $Q_1 = \acute{\mathrm{e}} \mathrm{o} \, 1^{\mathrm{o}} \, \mathrm{Quartil};$

 P_{90} = é o 90° Percentil;

 P_{90} = é o 10° Percentil.

Quartis => dividem um conjunto de dados em quatro partes iguais.



em que,

 Q_1 = o 1º Quartil deixa 25% dos elementos;

 Q_2 = o 2º Quartil deixa 50% dos elementos e coincide com a **Mediana**;

 Q_3 = o 3º Quartil deixa 75% dos elementos.

57

Medidas de Achatamento ou Curtose

- \checkmark Formulas para cálculo de Q_I e Q_3 para o caso de variáveis quantitativas contínuas
- (a) Determinação de Q_I :
 - (i) Calcula-se: $\frac{N}{4}$;
 - (ii) Identifica-se a classe de Q_I pela F_i (freq. acumulada);
 - (iii) Aplica-se a fórmula:

$$Q_{1} = L_{Q_{1}} + \frac{(n/4) - F_{a}}{f_{Q_{1}}} h$$

- ✓ Formulas para cálculo de Q_1 e Q_3 para o caso de variáveis quantitativas contínuas (continuação)
- (b) Determinação de Q_3 :
 - (i) Calcula-se: $\frac{3N}{2}$
 - (ii) Identifica-se a classe de Q_3 pela F_i (freq. acumulada);
 - (iii) Aplica-se a fórmula:

$$Q_3 = L_{Q_3} + \frac{(3n/4) - F_a}{f_{Q_3}} h$$

Medidas de Achatamento ou **Curtose**

Exemplo: Dada a distribuição, determinar os Quartis (Q_1 e Q_3) e a mediana.

\			
Classes	f_i	F_{i}	-
7 – 17	6	6	_
17 – 27	15	21	\longrightarrow Classe Q_1
27 – 37	20	41	→ Classe $\hat{m}d$
37 – 47	10	51	\longrightarrow Classe Q_3
47 – 57	5	56	_
(n/4) E	7	(n/2) E	(3n)

$$Q_1 = L_{Q_1} + \frac{(n/4) - F_a}{f_{Q_1}} h$$

$$\hat{m}d = L_i + \frac{(n/2) - F_a}{f_{md}} h_{md}$$

$$\boxed{Q_1 = L_{Q_1} + \frac{(n/4) - F_a}{f_{Q_1}} h} \qquad \boxed{\hat{m}d = L_i + \frac{(n/2) - F_a}{f_{md}} h_{md}} \qquad \boxed{Q_3 = L_{Q_3} + \frac{(3n/4) - F_a}{f_{Q_3}} h}$$

Exemplo: Dada a distribuição, determinar os Quartis (Q_1 e Q_3) e a mediana.

Classes	f_i	F_i	n = 56;
7 – 17	6	6	- n 56
17 – 27	15	21	$Q_1 = \frac{n}{4} = \frac{56}{4} = 14$ elemento
27 - 37	20	41	
37 - 47	10	51	$Q_3 = \frac{3n}{4} = \frac{3.56}{4} = 42$ ° elemento
47 - 57	5	56	4 4
			_

$$\hat{m}d = \frac{\left(\frac{n}{2}\right) + \left(\frac{n}{2} + 1\right)}{2} = \frac{\left(\frac{56}{2}\right) + \left(\frac{56}{2} + 1\right)}{2} = 28 \circ \text{ e } 29 \circ \text{ elementos}$$

Medidas de Achatamento ou **Curtose**

Exemplo: Dada a distribuição, determinar os Quartis (Q_1 e Q_3) e a mediana.

Classes	f_{i}	F_{i}
7 – 17	6	6
17 – 27	15	21
27 - 37	20	41
37 - 47	10	51
47 - 57	5	56
a O. temos:	Para $\hat{m}d$	temos:

Para
$$Q_1$$
 temos:
 $L_{Q_1} = 17$; $n = 56$; $F_a = 6$; Para $\hat{m}d$ temos:
 $h = 10$; $f_{Q_1} = 15$ Para $\hat{m}d$ temos:
 $L_i = 27$; $n = 56$; $F_a = 21$; Para Q_3 temos:
 $L_{Q_3} = 37$; $n = 56$; $F_a = 41$; $h = 10$; $f_{Q_3} = 10$ 62

$$Q_{1} = L_{Q_{1}} + \frac{(n/4) - F_{a}}{f_{Q_{1}}} h$$

$$\hat{m}d = L_{i} + \frac{(n/2) - F_{a}}{f_{md}} h_{md}$$

$$Q_{3} = L_{Q_{3}} + \frac{(3n/4) - F_{a}}{f_{Q_{3}}} h$$

Para
$$Q_3$$
 temos:
 $L_{Q_3} = 37$; $n = 56$; $F_a = 41$;
 $h = 10$; $f_{Q_3} = 10$

Exemplo: Dada a distribuição, determinar os Quartis (Q_1 e Q_3) e a mediana.

$$Q_{1} = L_{Q_{1}} + \frac{(n/4) - F_{a}}{f_{Q_{1}}} h = 17 + \frac{\left(\frac{56}{2} - 6\right)}{15} \cdot 10 = 22,33$$

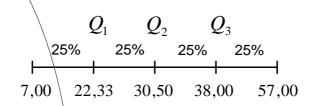
$$\hat{m}d = L_{1} + \frac{(n/2) - F_{a}}{f_{md}} h_{md} = 27 + \frac{\left(\frac{56}{2} - 21\right)}{15} \cdot 10 = 30,50$$

$$Q_{3} = L_{Q_{3}} + \frac{(3n/4) - F_{a}}{f_{Q_{3}}} h = 37 + \frac{\left(\frac{3.56}{4} - 41\right)}{10} \cdot 10 = 38,00$$

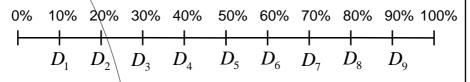
63

Medidas de Achatamento ou Curtose

Exemplo: Dada a distribuição, determinar os Quartis (Q_1 e Q_3) e a mediana.



Decis => são os valores que dividem um conjunto de dados em **10 partes iguais**.



em que,

 D_1 = o 1º Decil deixa 10% dos elementos;

 $D_2 = 0.2^{\circ}$ Decil deixa 20% dos elementos;

 $D_9 =$ o 9° Decil deixa 90% dos elementos.

65

Medidas de Achatamento ou Curtose

Determinação de um Decil D_i :

(i) Calcula-se: $\frac{i.N}{10}$ em que i = 1, 2, ..., 9;

(ii) Identifica-se a classe de D_i pela F_i (freq. acumulada);

(iii) Aplica-se a fórmula:

$$D_i = L_i + \frac{(i.N/10) - F_a}{f_{Di}} h$$

em que,

 L_i = limite inferior da classe D_i ;

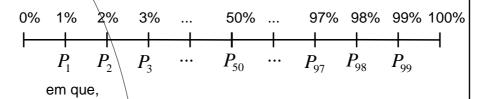
n = tamanho da amostra;

 F_a = soma das freqüências das classes anteriores a que D_i

 f_{Di} = freqüência da classe D_i ;

 $h = \text{amplitude da classe } D_i$.

Percentis => são os valores que dividem um conjunto de dados em **100 partes iguais**.



 P_1 = o 1º Percentil deixa 1% dos elementos;

 $P_2 = 0.2^{\circ}$ Percentil deixa 2% dos elementos;

 P_{99} = o 99° Percentil deixa 99% dos elementos.

67

Medidas de Achatamento ou Curtose

Determinação de um Percentil P_i:

- (i) Calcula-se: $\frac{i.N}{100}$ em que i = 1, 2, ..., 98, 99;
- (ii) Identifica-se a classe de P_i pela F_i (freq. acumulada);

$$P_{i} = L_{i} + \frac{(i.N/100) - F_{a}}{f_{P_{i}}} h$$

em que,

 L_i = limite inferior da classe P_i ;

n = tamanho da amostra;

 F_a = soma das freqüências das classes anteriores a que P_i ;

 f_{Pi} = freqüência da classe P_i ;

 $h = \text{amplitude da classe } D_i$.

Exemplo: Dada a distribuição, determinar o Grau de Curtose (K).

Classes		f_{i}	F_{i}
7 – 17		6	6
17 – 27		15	21
27 - 37		20	41
37 - 47		10	51
47 - 57	1	5	56

$$K = \frac{Q_3 - Q_1}{2(P_{90} - P_{10})}$$

Já tínhamos obtidos:

$$Q_1 = 22,33 \text{ e } Q_3 = 38,00$$

$$P_{i} = L_{i} + \frac{(i.N/100) - F_{a}}{f_{P_{i}}} h$$

Para P₁₀ temos

$$L_{P_{10}} = 7$$
; $n = 56$; $F_a = 0$; $h = 10$; $f_{P_{10}} = 6$ $P_{10} = 16,33$

Para P_{90} temos:

$$L_{P_{90}} = 37$$
; $n = 56$; $F_a = 41$; $h = 10$; $f_{P_{90}} = 10$

$$P_{90} = 46,40$$

69

Medidas de Achatamento ou Curtose

Exemplo: Dada a distribuição, determinar o Grau de Curtose (K).

Classes		f_{i}	$\boldsymbol{F_i}$
7 – 17		6	6
17 – 27		15	21
27 - 37		20	41
37 - 47	\	10	51
47 - 57	\	5	56

$$K = \frac{Q_3 - Q_1}{2(P_{90} - P_{10})}$$

Agora temos tudo:

$$Q_1 = 22,33 \text{ e } Q_3 = 38,00$$

$$P_{10} = 16,33$$
 e $P_{90} = 46,40$

$$K = \frac{Q_3 - Q_1}{2(P_{90} - P_{10})} = \frac{38,00 - 22,33}{2(46,40 - 16,33)} = 0,2606$$

Assim o **Grau de Curtose**, de ser classificado da seguinte forma:

$$K = \frac{Q_3 - Q_1}{2(P_{90} - P_{10})}$$

K=0.263 => Distribuição de freqüência **Mesocúrtica**;

K > 0,263 > Distribuição de freqüência **Platicúrtica**;

K < 0.263 \Rightarrow Distribuição de frequência **Leptocúrtica**.