



# An increase in frequency of extreme events

"Economic Impacts of Extreme Events"

Maria Assunção Faus da Silva Dias Departamento de Ciências Atmosféricas Instituto de Astronomia, Geofísica e Ciências Atmosféricas Universidade de São Paulo 23 March 2012

- What is extreme?
- A few examples
- Reinsurance companies looking at extremes
- Observed change is frequency of extremes
- Future trends
- Uncertainty of future climate scenarios



# From a socio-economic perspective: IMPACTS

• Involve risc

- Deaths, injured, damage to property

• Related to vulnerability and resilience





# SIgma

#### No 1/2011

Natural catastrophes and man-made disasters in 2010: a year of devastating and costly events

#### Natural catastrophes

The term "natural catastrophe" refers to an event caused by natural forces. Such an event generally results in a large number of individual losses involving many insurance policies. The scale of the losses resulting from a catastrophe depends not only on the severity of the natural forces concerned, but also on man-made factors, such as build-ing design or the efficiency of disaster control in the afflicted region. In this *sigma* study, natural catastrophes are subdivided into the following categories: floods, storms, earth-quakes, droughts/forest fires/heat waves, cold waves/frost, hail, tsunami and other natural catastrophes.

#### Man-made disasters

This study categorises as "man-made" or "technical" disasters major events associated with human activities. Generally, a large object in a very limited space is affected, which is covered by a small number of insurance policies. War, civil war and war-like events are excluded. *sigma* subdivides man-made disasters into the following categories: major fires and explosions, aviation and space disasters, shipping disasters, rail disasters, mining accidents, collapse of buildings/bridges and miscellaneous (including terrorism).

# Number of victims



Source: Swiss Re Economic Research & Consulting

# Number of events





#### Tables for reporting year 2010

#### Table 3

#### List of major losses in 2010 according to loss category

|                                  |        |              |                      |       | Insured loss <sup>2</sup> |       |
|----------------------------------|--------|--------------|----------------------|-------|---------------------------|-------|
|                                  | Number | in %         | Victims <sup>1</sup> | in %  | (in USD m)                | in %  |
| Natural catastrophes             | 167    | 54.9%        | 297 127              | 97.9% | 39869                     | 91.7% |
| Floods                           | 69     |              | 11 0 27              |       | 6393                      |       |
| Storms                           | 63     |              | 1702                 |       | 20126                     |       |
| Earthquakes                      | 13     | 227050 12943 |                      |       |                           |       |
| Droughts, bush fires, heat waves | 9      | 56276 10     |                      |       |                           |       |
| Cold, frost                      | 10     | 1024 397     |                      |       |                           |       |
| Hail                             | 1      |              | 28                   |       |                           |       |
| Other natural catastrophes       | 2      |              | 20                   |       | ]                         | _     |
| Man-made disasters               | 137    | 45.1%        | 6446                 | 2.1%  | 3606                      | 8.3%  |
|                                  |        |              |                      |       |                           |       |

#### Table 6 Chronological list of all natural catastrophes 2010

#### Floods

|             | Country                         |                                                     | No. of victims/amount of damage                    |
|-------------|---------------------------------|-----------------------------------------------------|----------------------------------------------------|
| Date        | Place                           | Event                                               | in original currency and (USD)                     |
| 1.14.1.     | Brazil                          | Floods and mudslides caused by heavy rain; collapse | 85 dead                                            |
|             | Rio de Janeiro, Angra dos Reis, | of hillside buries bungalows at luxury beach resort | USD 145m total damage                              |
|             | Sao Paolo, Minas Gerais         |                                                     |                                                    |
| 1.115.1.    | Kenya                           | Floods caused by heavy rains; 6664 houses,          | 40 dead                                            |
|             | North Rift, South Rift, Nyanza  | croplands, infrastructure destroyed                 | 8 270 homeless                                     |
| 18.122.1    | . United States                 | Floods and mudslides caused by heavy rain, snow     | USD 100–300m insured loss*                         |
| 1.46.4.     | Peru                            | Floods and mudslides caused by heavy rain           | 68 dead                                            |
|             | Huánuco, Chinchao, Ambo,        |                                                     | 50 injured                                         |
|             | Trujillo, Porvenir              |                                                     |                                                    |
| 4.412.4.    | Brazil                          | Floods and landslides caused by heavy rain;         | 256 dead                                           |
|             | Rio de Janeiro, Niteroi         | mudslides bury houses in slums of hill areas        | 403 injured                                        |
|             |                                 |                                                     | 74 535 homeless                                    |
|             |                                 |                                                     | USD 200m total damage                              |
| 30.43.5.    | United States                   | Floods caused by heavy rain, storms; Country Music  | 33 dead                                            |
|             | TN (Nashville), KY, GA, AR      | Hall of Fame, Grand Ole Opry House flooded          | USD 600m–1bn insured loss*                         |
|             |                                 |                                                     | USD 1.5bn total damage                             |
|             |                                 |                                                     |                                                    |
| 156-166     | France                          | Floods caused by beavy rain: damage to cars, homes  | 23 dead 2 missing                                  |
| 10.0. 10.0. | Var Arcs Draguignan Luc         | husinesses and infrastructure                       | FUR 610m (USD 818m) insured loss                   |
|             | Muy Roquebrune sur Argens       | businesses and minds docure                         | EUR 1 05bn (USD 1 41bn) total damage               |
|             | Cote d'Azur                     |                                                     | Lon noobh (oob n. Hish) total admage               |
| 196-216     | Brazil                          | Floods and mudslides caused by heavy rain: bridges  | at least 54 dead, 53 missing                       |
| 10.0. 21.0. | Alaqoas Quebrangulo             | highways washed away                                | 40,000 homeless                                    |
|             | Pernambuco                      | ngnwayo washea away                                 | BRI 1bn (USD 602m) total damage                    |
| 106-236     | Respin and Horzogovina          | Floods causes by heavy rains 4000 houses flooded    | 2 220 homoloss                                     |
| 18.023.0.   | Sova Rivor Brčko, Banja Luka    | Damage to reads and infrastructure                  | 2 223 nomeless<br>PAM 128m (LISD 87m) total damage |
|             | Tuzla                           | Damage to toads and millastructure                  | DAIW 12011 (03D 0711) total damage                 |
|             |                                 |                                                     |                                                    |

# Sigma Table of Catastrophic events for 2008

| 21.112.12. | Brazil                 | Floods and landslides in Itajai Valley caused by | 118 dead                         |
|------------|------------------------|--------------------------------------------------|----------------------------------|
|            | Santa Catarina, Ilhota | heavy rain; damage to Port of Itajai             | 15 injured                       |
|            |                        |                                                  | 23000 homeless                   |
|            |                        |                                                  | BRL 600m (USD 257m) insured loss |
|            |                        |                                                  | BRL 935m (USD 401m) total damage |

# THE CASE OF THE SÃO PAULO METROPOLITAN AREA

## Inundações em São Paulo

#### Isto é - São Paulo, 10 de fevereiro de 2004



A avenida Aricanduva virou rio. O resgate de pessoas chegou a ser feito de helicópteros.

Em todo o País, os números são assustadores. Já são 98 mortos, 120 feridos, mais de 120 mil desabrigados em 405 cidades, 14 grandes barragens e 4.500 <u>casas totalmente destruídas, além de 28 mil</u>



# São Paulo, 27 de fevereiro de 2011



Ponto de alagamento intransitavel na esquina da rua Cardeal Arcoverde, em Pinheiros. 27/02/2011

Foto: Luciano Finotti/FotoRepórter/AE

#### Chuva causa transtornos em SP

Mercado da Ceagesp, na Lapa, Zona Oeste, alagou. Bombeiros dizem ter enviado equipes com bote nos bairros da região.

Do G1 SP

imprimir



Homens empurram carro na Avenida Dumont Villares, na Zona Norte. (Foto: Mario Ângelo/ AE)



ARENA MULTIUSO: Torcedor nada em área alagada na arquibancada do Morumbi; São Paulo e Palmeiras empataram (1 a 1) pelo Paulista



# Evolution of the urban area of SPMA from 1891 to 2007







Evolution of the 95% and 99% percentiles of daily rainfall from a 20 year PDF determined every succesive year





## LA PLATA BASIN

#### Average conditions

25.000

20.000

15.000

10.000

5.000

1930

1940

1950

1960

(m3/s)



RUTASNACIONALES

CONSOLIDADO

D FERROVIARIA

MAGEN SATELITAR

PITTAS PRC





Walter Collichonn et al

## Hurricane Catarina 26 March 2004













### Landslides in Santa Catarina November 2008





#### Balneário Camboriu

G JITT

Blumenau





# CAUSE ATRIBUTION OF THE OBSERVED CHANGES

# The world according to climate models















FAR (1990), SAR (1996), TAR (2001) e AR4 (2007).

# Grid evolution tied to computer power evolution

# **Modeling Physical Processes**





Downloaded from www.sciencemag.org on June 13, 2008

# **IPCC 2007**





**Eventos Extremos** 



Relative changes in precipitation (in percent) for the period 2090–2099, relative to 1980–1999. Values are multimodel averages based on the SRES A1B scenario for December to February (left) and June to August (right). White areas are where less than 66% of the models agree in the sign of the change and stippled areas are where more than 90% of the models agree in the sign of the change.

#### Chapter 10

# IPCC 2007 DJF





Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones C. **2004**.

Amazonian forest dieback under climate-carbon cycle projections for the 21st century.

Theoretical and Applied Climatol. 78: 137–156.





### ECONOMIA DAS MUDANÇAS CLIMÁTICAS NO BRASIL

Estimativas da Oferta de Recursos Hídricos no Brasil em Cenários Futuros de Clima (2015 – 2100)



Sub-Projeto: Efeitos das Mudanças Climáticas Globais na Disponibilidade de Recursos Hídricos no Brasil

Balanço Hídrico no Brasil e Determinação e Verificação dos Métodos para os Cálculos de Balanço Hídrico do Futuro









### Estimating the risk of Amazonian forest dieback

Anja Rammig<sup>1</sup>, Tim Jupp<sup>2</sup>, Kirsten Thonicke<sup>1</sup>, Britta Tietjen<sup>1</sup>, Jens Heinke<sup>1</sup>, Sebastian Ostberg<sup>1</sup>, Wolfgang Lucht<sup>1</sup>, Wolfgang Cramer<sup>1</sup> and Peter Cox<sup>2</sup>



# Three steps

- Define *index* based on how well a climate simulation reproduces the present climate
- Perform weigthed average of RAINFALL from all climate projections using *index* as weighting factor
- Feed a dynamic vegetation model with resulting rainfall

# Biomass change for weigthed vs non weighted average rainfall: from loss to gain



## 2011

# The Hadley Centre Earth System Model (HadGEM2-ES) for Climate Impacts

Jemma Gornall, Richard Betts, Ron Kahana, Nicola Golding, Paul Halloran and Andy Wiltshire

### The climate system – HadGEM2





| Name   | Radiative forcing                                                     | Concentration<br>(p.p.m.)                                                | Pathway                            | Model providing RCP* | Reference |
|--------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------|----------------------|-----------|
| RCP8.5 | >8.5 W m <sup>-2</sup> in 2100                                        | >1,370 CO <sub>2</sub> -equiv. in 2100                                   | Rising                             | MESSAGE              | 55,56     |
| RCP6.0 | $\sim$ 6 W m <sup>-2</sup> at stabilization after 2100                | $\sim$ 850 CO <sub>2</sub> -equiv. (at stabilization after 2100)         | Stabilization without overshoot    | AIM                  | 57,58     |
| RCP4.5 | $\sim$ 4.5 W m <sup><math>-2</math></sup> at stabilization after 2100 | ${\sim}650~\text{CO}_2\text{-equiv.}$ (at stabilization after 2100)      | Stabilization without<br>overshoot | GCAM                 | 48,59     |
| RCP2.6 | Peak at $\sim$ 3 W m <sup>-2</sup> before 2100 and<br>then declines   | Peak at $\sim$ 490 CO <sub>2</sub> -equiv. before 2100 and then declines | Peak and decline                   | IMAGE                | 60,61     |

## **Global climate**



# **Broad-leaf Tree Fraction**



90W

-0.3

-0.7

0

0

90E

0.3

0.7



-0.7 -0.3 0 0.3 0.7

# **Critical points**

• Uncertainty is due to

- Rainfall simulation in climate models

- Biomass behavior in dynamic vegetation models

- changes in rainfall
- high CO2 concentration

Uncertainty reduction in future climate projections

 Use models that reproduce main features of past and present climate

 Use model differences as a measure of uncertainty





# Thank you!

### ECONOMIA DAS MUDANÇAS CLIMÁTICAS NO BRASIL

Estimativas da Oferta de Recursos Hídricos no Brasil em Cenários Futuros de Clima (2015 – 2100)



Sub-Projeto: Efeitos das Mudanças Climáticas Globais na Disponibilidade de Recursos Hídricos no Brasil

Balanço Hídrico no Brasil e Determinação e Verificação dos Métodos para os Cálculos de Balanço Hídrico do Futuro







5.3 Conclusões relativas aos dados provenientes das análises dos climas futuros para o modelo HadRM3P na escala de 50 km X 50 km

Pelos resultados obtidos, observa-se que as vazões das bacias hidrográficas do Tocantins, Atlântico NE Ocidental, Parnaíba e Amazônica, terão uma considerável diminuição até 2100 para os dois cenários de emissão analisados.

Observa-se uma diminuição dos valores das vazões da bacia do Paraná no período de 2011 a 2070 para os dois cenários de emissão analisados e um aumento da vazão no período de 2071 a 2100, sendo que para o cenário A2-BR a vazão fica acima à observada no período de 1961 a 1900. Nesta bacia, observa-se um aumento da precipitação ao longo do tempo que nem sempre reflete num aumento das vazões em decorrência das perdas por evapotranspiração.

Para a bacia do Paraguai observa-se uma pequena diminuição nos valores da vazão para o cenário de emissão B2-BR no período de 2011 a 2040 e um pequeno aumento no período de 2041 a 2100, mantendo-se constante neste período. Para o cenário de emissão A2-BR observa-se uma pequena diminuição dos valores da vazão no período de 2011 a 2070 e um grande aumento no período de 2071 a 2100 com valores muito acima aos observados no período de 1961 a 1990.

Para as bacias do Atlântico Sul e Uruguai observase uma pequena tendência de aumento das vazões até 2100 nos dois cenários.

A vazão da bacia do Atlântico SE apresenta uma tendência de uma pequena diminuição até o ano 2100 para o cenário B2-BR e praticamente não se altera no cenário A2-BR.

Para as bacias do NE Oriental e Atlântico E observase uma redução brusca das vazões até o período de 2100 para os dois cenários de emissão, chegando a valores praticamente nulos.

Para a bacia do São Francisco observa-se que haverá uma diminuição da vazão até o período de 2011 a 2040 com tendência de pequeno aumento nos períodos de 2041 a 2100 para os dois cenários de emissão analisados. http://www.ipea.gov.br/mudancaclimatica/imag es/stories/PDFs/Economia\_das\_Mudancas\_Clim aticas\_estudos\_e\_pesquisas.pdf

> Instituto de Pesquisa Econômica Aplicada – IPEA Diretoria de Estudos Regionais e Urbanos – DIRUR Coordenação de Meio Ambiente e Desenvolvimento Sustentável

> > Economia das Mudanças Climáticas

José Aroudo Mota Jeferson Gazoni Geraldo Sandoval Góes

| Região | Impacto previsto                                                 | Fontes                       |  |
|--------|------------------------------------------------------------------|------------------------------|--|
|        | Grande parte do bioma Amazônico, no leste da região, deverá ser  | Cramer <i>et al.</i> (2004)  |  |
|        | sobreposto por Savana                                            | Nobre <i>et al.</i> (2007)   |  |
|        | Sacas durante os períodos mais quentas do ano                    | Marengo (2007a)              |  |
| Norte  | secas durante os periodos mais quentes do ano                    | Wara; Ravelo; Delaney (2005) |  |
|        | Aumento da incidência de incêndios florestais                    | Nepstad et al. (2001)        |  |
|        | Derde de florestes no norte de Amazônia                          | Jones et al. (2003)          |  |
|        | Perda de horestas no norte da Amazoma                            | Cox <i>et al.</i> (2004)     |  |
|        | Inundações e erosões nas áreas mais baixas e próximas ao litoral | IPCC (2001)                  |  |
|        | Aumento na incidância de doences como maléria e dencue           | Moreira (1986)               |  |
|        | Aumento na mendenera de doenças como mararia e dengue            | Lieshout et al. (2004)       |  |
|        | Sazonalidade das precipitações deverá afetar a quantia e         | Corporter at al. $(1002)$    |  |
|        | variabilidade de fluxo de água na bacia do Amazonas e alterações | Lake $at al (2000)$          |  |
|        | na distribuição de espécie aquáticas                             | Lake <i>et ut</i> . (2000)   |  |
|        |                                                                  | Higgins (2007)               |  |
|        | Perda de biodiversidade                                          | Miles; Grainger; Phillips    |  |
|        | i erda de biodiversidade                                         | (2004)                       |  |