

A Bad Year? Climate Variability and the Wine Industry in Chile

International Workshop on General Equilibrium Modeling, Universidad Adolfo Ibañez Viña del Mar, December 3-4, 2018

Eduardo Haddad Patricio Aroca Pilar Jano Ademir Rocha Bruno Pimenta

Introduction

Viticulture is highly dependent upon climatic conditions

Quality mainly determined by weather:

Australia (Webb et al., 2008); Mosel Valley, Germany (Ashenfelter and Storchmann, 2010); Bordeaux, France (Ashenfelter, 2010)

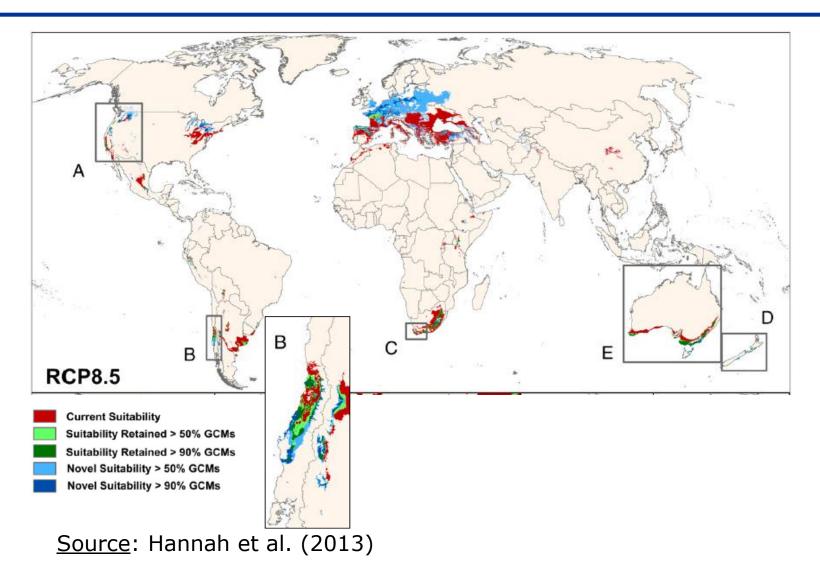
Implications for wine prices and vineyard profitability:

Oczkowski (2016, 1994); Ashenfelter (2010); Steiner (2004); Schamel and Anderson (2003)

What makes a "good year"?

Weather conditions as a good predictor of a "good year" quality and prices of the mature wines of a vintage (Ashenfelter, 2010)

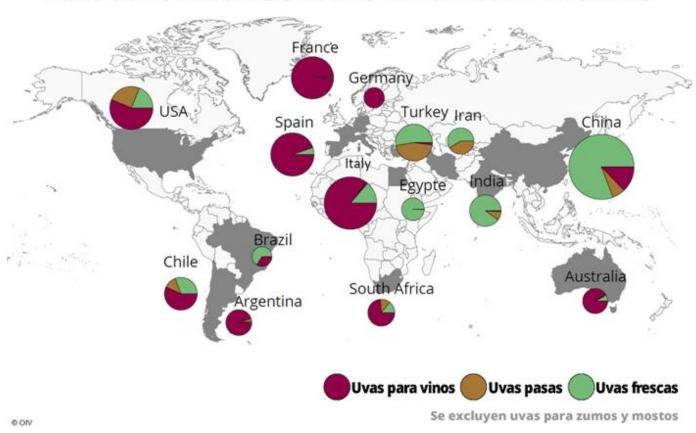
Chardonnay (Casablanca) - ideal conditions - variation between low and high temperatures (10 °C - 25 °C). Cold climate of the Pacific Ocean, brings acidic marks and citrus notes.


Temporary *versus* permanent climate shocks

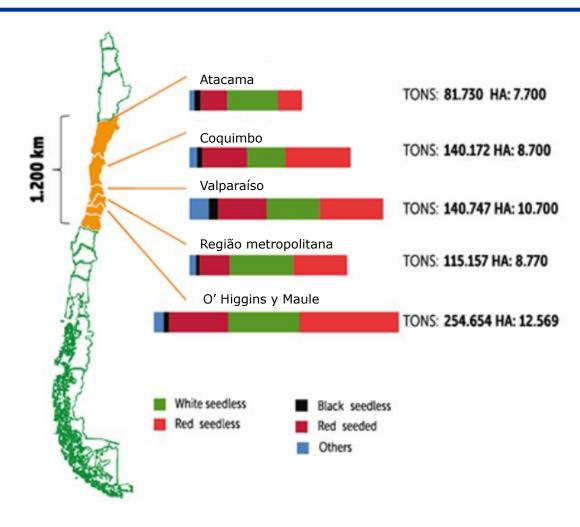
Climate change: growing season warming trends, increasing water stress, and increasing frequency and intensity of extreme climatic events

Climate change and wine:

- Uneven geographic impacts (Jones et al., 2005; Hannah et al., 2013)
- Effects on quantity (yields) and quality (Van Leeuwen and Darriet, 2016)
- Economic implications (Ashenfelter and Strochmann, 2016)


Climate change and the wine industry

Department of Economics, University of Sao Paulo 5


Grape production

MAYORES PRODUCTORES DE UVA DEL MUNDO

Source: http://www.oiv.int/

Grape-growing regions in Chile

Source: http://www.oiv.int/

Viticulture, wine industry and weather in Chile

Wine

Global wine production expected to fall by 5% due to 'climatic events'

South America, particularly Argentina and Chile, likely to see biggest decline, which may concern fans of wines such as malbec

▲ A worker harvests grapes in South Africa where production is set to fall by 19%. Photograph: Mike

Global wine production is expected to fall by 5% in 2016 because of "climatic events" causing steep drops in production in most of the southern hemisphere, particularly Chile and Argentina.

Viticulture, wine industry and weather in Chile

Wine production (2015):

- Rainfall reduced volume and quality of the grapes
- Climatic conditions generated a low acidity wine, low alcohol and soft structure, which is not the traditional characteristic of a Chilean wine

Table grape production (2015):

Weather conditions have affected grape production

Grape production (2015-2016): - 10.6%

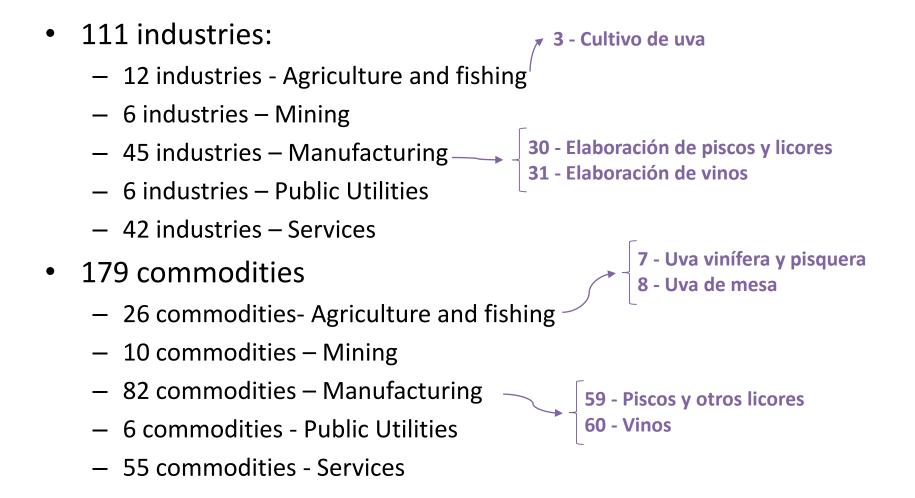
Source: GAIN Report (USDA): "Climatic Conditions Lower Chilean Fruit Production Volumes", 2015 Department of Economics, University of Sao Paulo 9

Vintage ratings – Chile: Reds (all regions)

Vintage	Score	Description					
2016	87	Untimely rains in key regions such as Colchagua, Maipo and Casablanca cut yields and led to less concentrated flavors, particularly for reds					
2015	92	A warm growing season and good harvest weather delivered powerful Cabernet Sauvignons and crisp, fruity Pinot Noirs; average quality for whites					
2014	89	Spring frost cut crop; good quality fruit harvested; crisp reds, savory whites					
2013 90		Cool vintage, delivering fresh, well-structured wines with good balance in terms of concentration and flavor					
2012	91	Warm summer weather resulted in an early harvest, with clean, disease-free fruit and yields 15 percent above average; late-ripening Carmenère performed well					

Source: https://www.winespectator.com/

Vintage ratings and wine prices


Effects of weather on quality ratings from wine guides (Cardebat et al. 2014; Ramirez, 2008)

Experts reviews may influence demand (Friberg and Grönqvist, 2012)

Schamel and Anderson (2003) estimate hedonic price functions for premium wine from Australia and New Zealand, differentiating implicit prices for **sensory quality ratings** over the vintages:

✓ The parameters for vintage rating are all significant and fairly constant over time; the price premium is 3.1% on average and varies between 2.3% and 4.1% for a one-point increase in the vintage rating for the 1992-2000 vintages

Industries and commodities in the CGE model

Grape and wine sectors in Chile

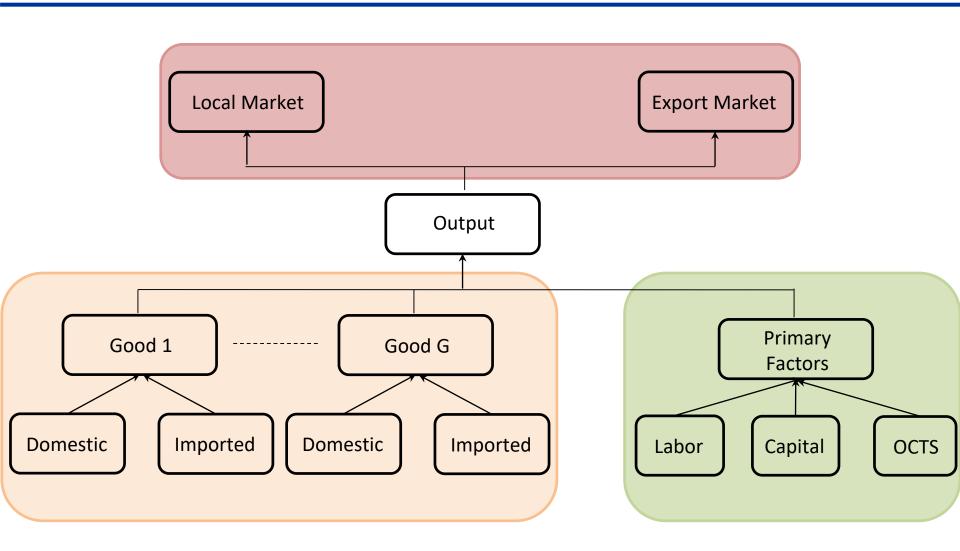
Grape growing sector

✓ Value added = 451 CLP billions (0.33% of total)

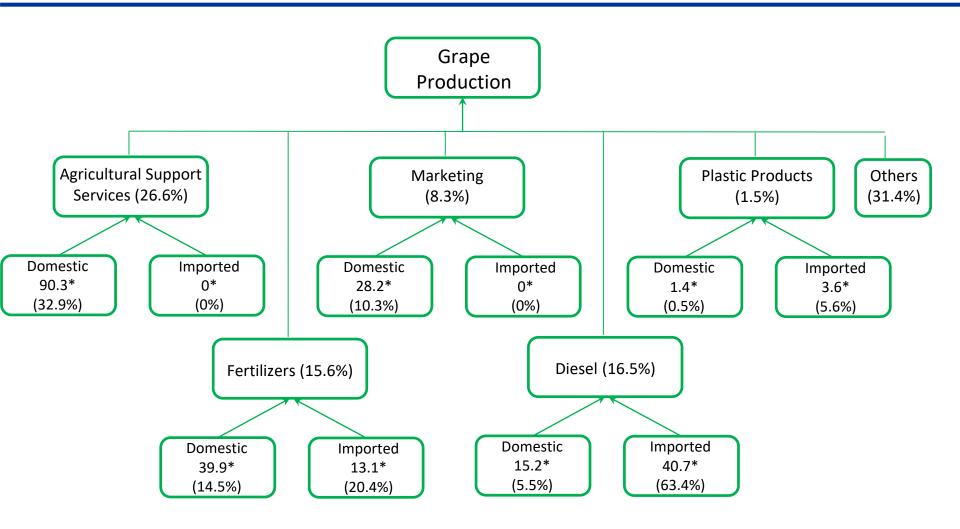
Wine making sector

✓ Value added = 402 CLP billions (0.30% of total)

Commodity output:

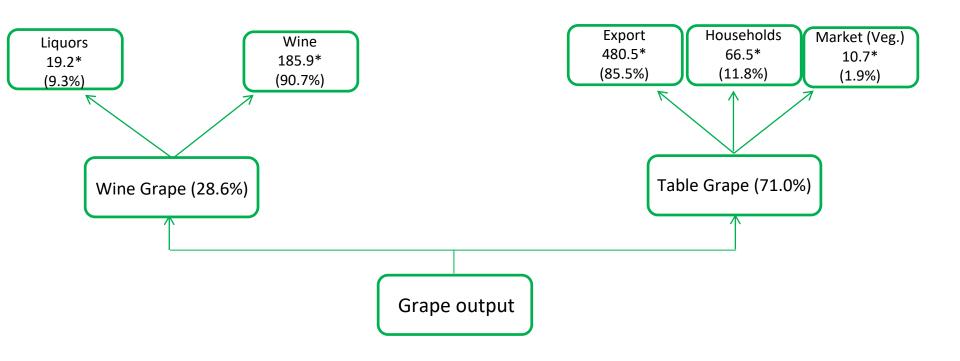

- ✓ Wine grape = 235 CLP billions (0.09% of total)
- ✓ Table grape = 582 CLP billions (0.22% of total)
- ✓ Piscos = 166 CLP billions (0.06% of total)
- \checkmark Wine =1277 CLP billions (0.48% of total)

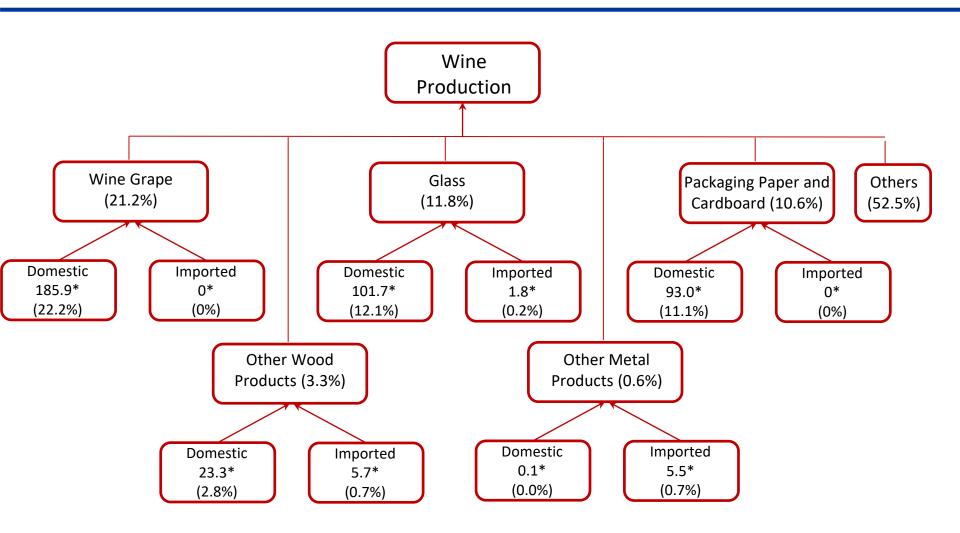
Main exports, Chile (2014)

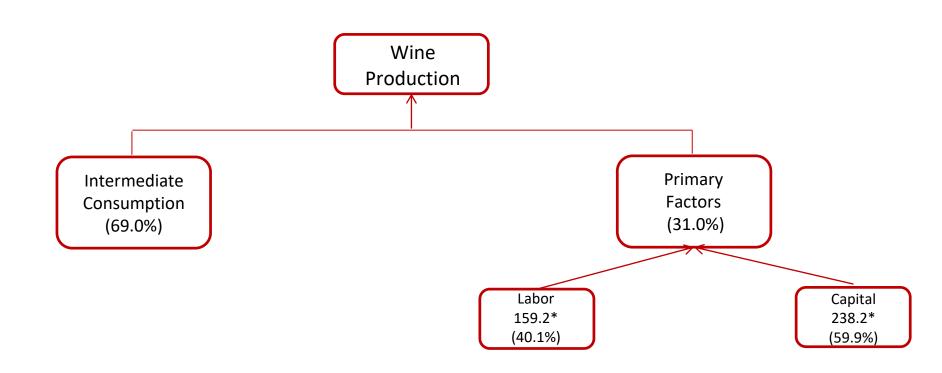

#	Commodity	Label	CLP billions	Share
1	Cobre	30 Cobre	21305	45.98%
2	Salmon y trucha refrigerados o congelados	43 SamonConge	2429	5.24%
3	Celulosa	71 Celulosa	1642	3.54%
4	Otros bienes y servicios	179 OtrosBienes	1390	3.00%
5	Servicios de transporte marítimo	141 TransMaritim	1074	2.32%
6	Vinos	60 Vinos	1063	2.30%
7	Conservas de frutas y vegetales	46 ConservasFru	926	2.00%
8	Madera aserrada, cepillada y astillada	68 MaderaAserra	918	1.98%
9	Otros productos químicos básicos	84 OtroQuimBasi	831	1.79%
10	Oxido de molibdeno	83 OxidoMolibde	633	1.37%
11	Hierro	32 Hierro	622	1.34%
12	Servicios comerciales a cambio de una retribución o por contrata	133 CormercialCa	622	1.34%
13	Oro	33 Oro	575	1.24%
14	Servicios de alquiler sin operarios	167 SerAlquiler	500	1.08%
15	Servicios de transporte aéreo de pasajeros	143 TransAeroPas	487	1.05%
16	Tableros y madera prensada	69 Tableros	487	1.05%
17	Uva de mesa	8 UvaMesa	481	1.04%
18	Abonos y plaguicidas	82 Abonos	479	1.03%
19	Productos básicos de metales no ferrosos	100 BasicoNoFerr	469	1.01%
20	Conservas de pescados y mariscos	45 ConservasPes	400	0.86%

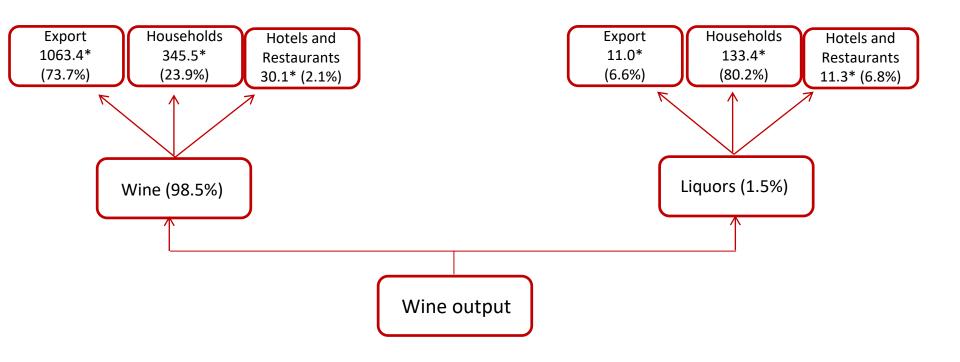
Source: MIP 2014, Chile Central Bank

General structure of production

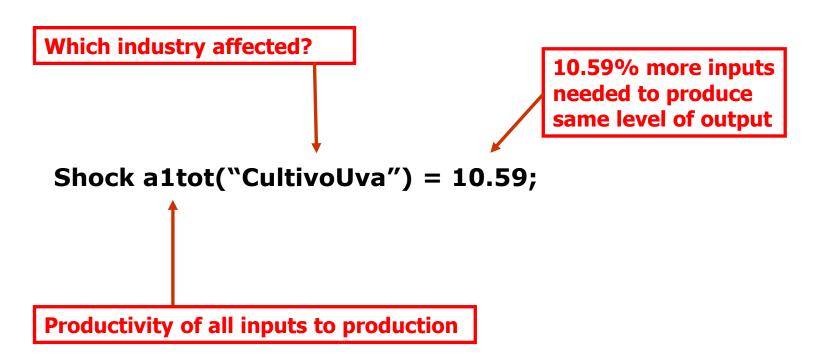

Grape production – intermediate inputs demand


Grape production – primary factors demand

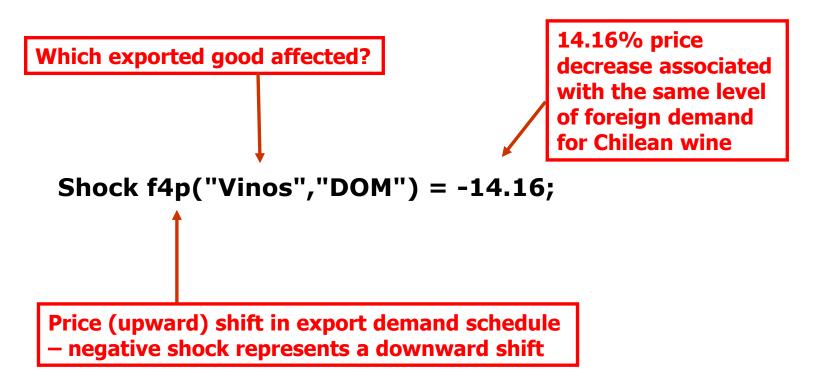

Destination of grape production


Wine production – intermediate inputs demand

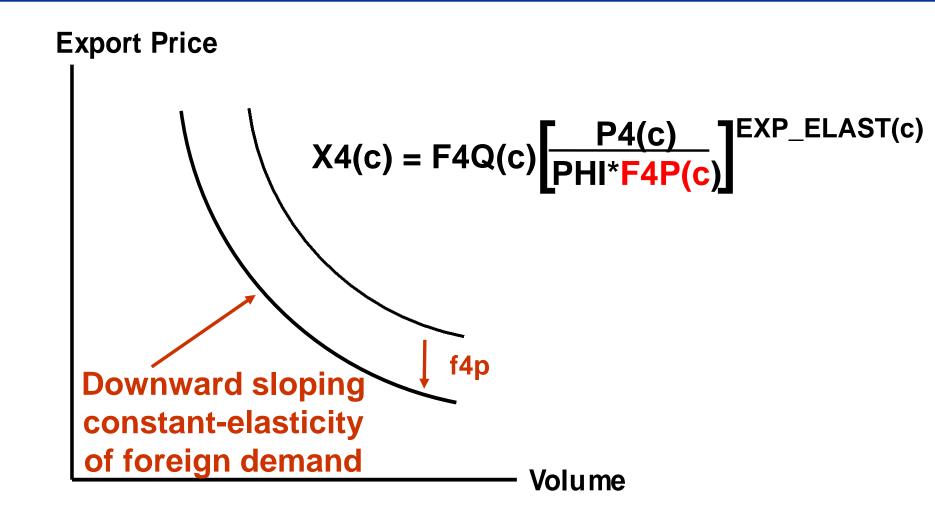
Wine production – primary factors demand



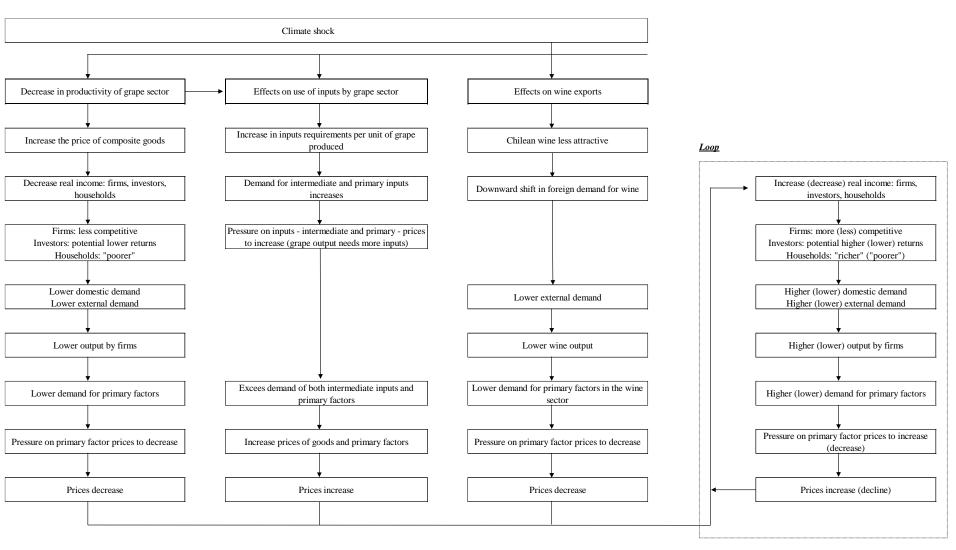
Destination of wine production

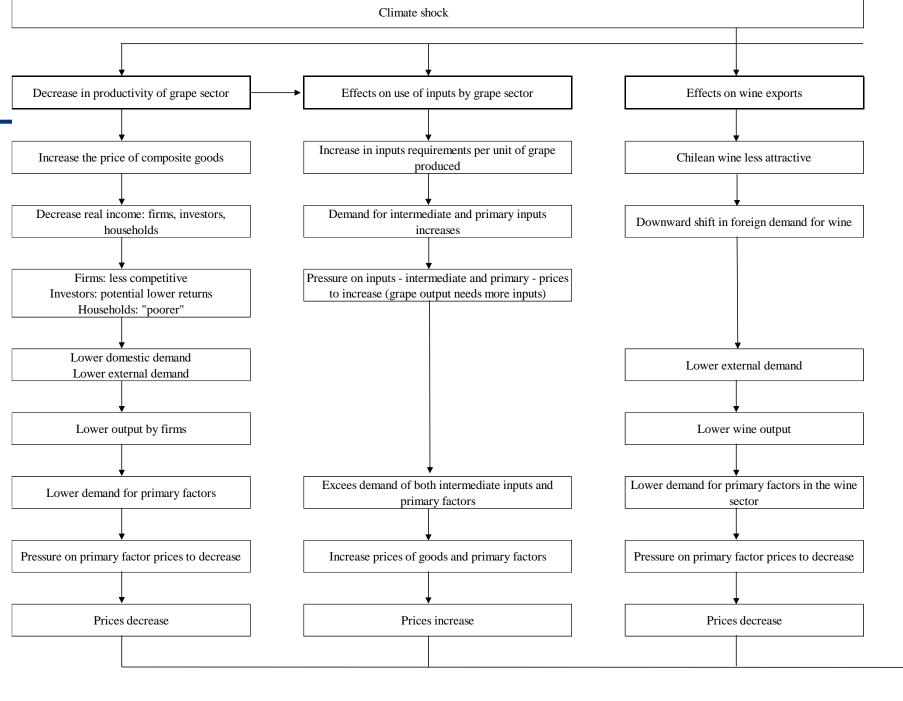

What if productivity in the grape sector decreased due to a temporary climate shock?

How do we implement grape output decline?



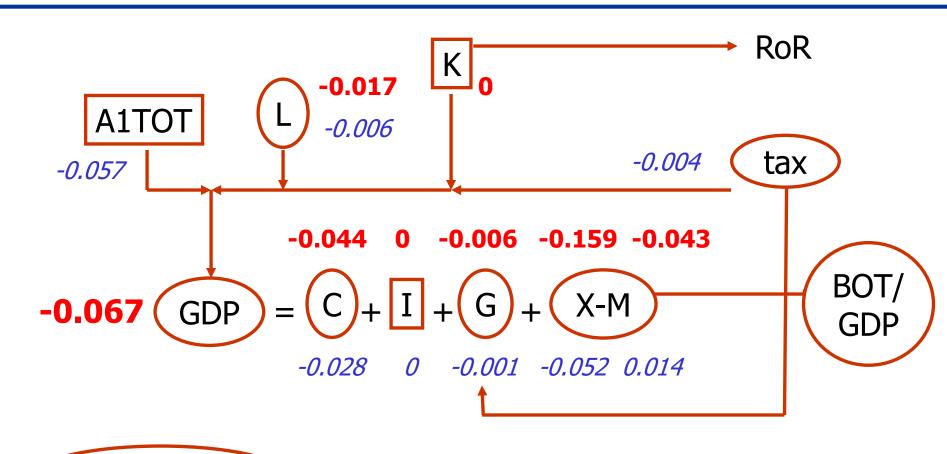
What if the climate shock also affected the quality of Chilean wine?


How do we implement quality decrease?


Individual export demand

Causal relations underlying the simulation results

<u>Price change channel</u> <u>Technical change channel</u> <u>Quality channel</u>



Price change channel

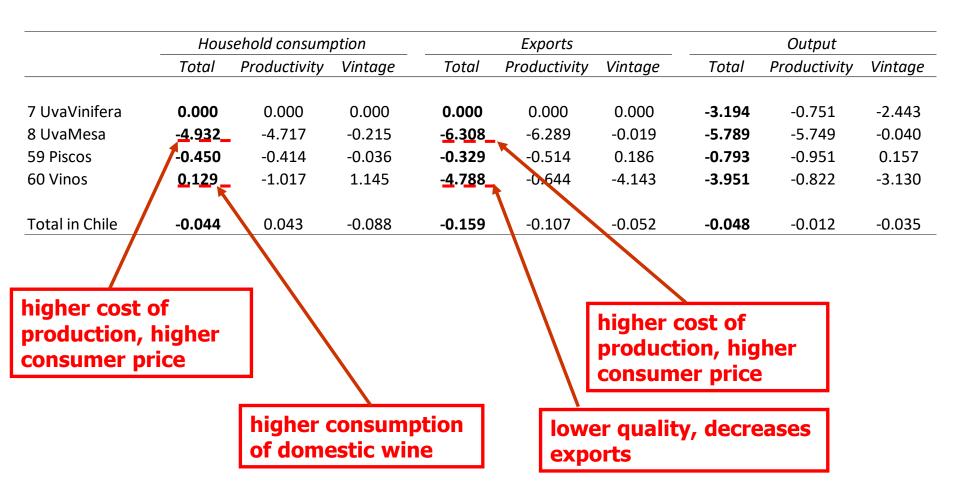
Technical change channel

Ouality channel

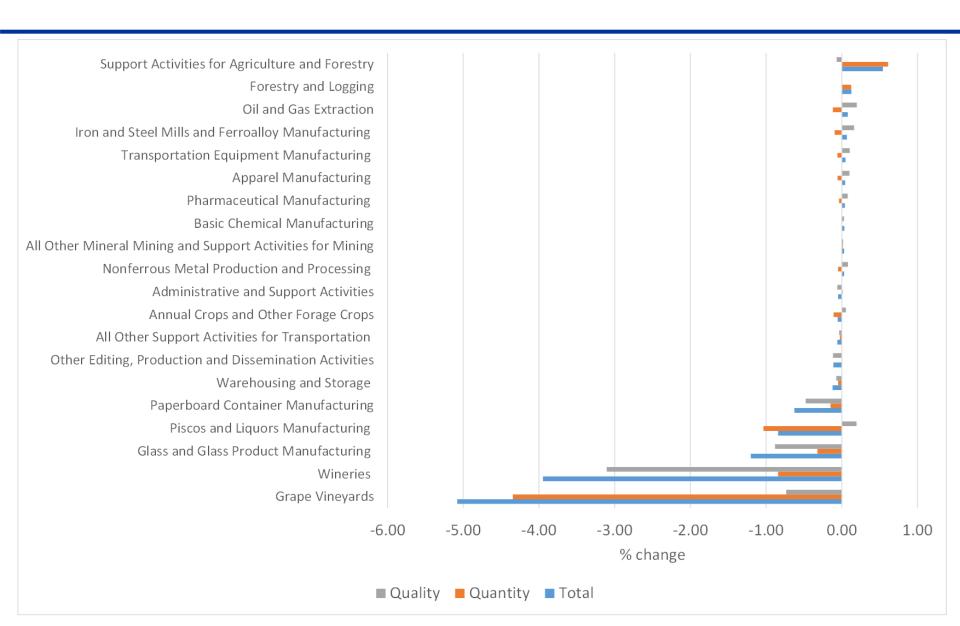
Macroeconomic effects (temporary shock)

Endogenous

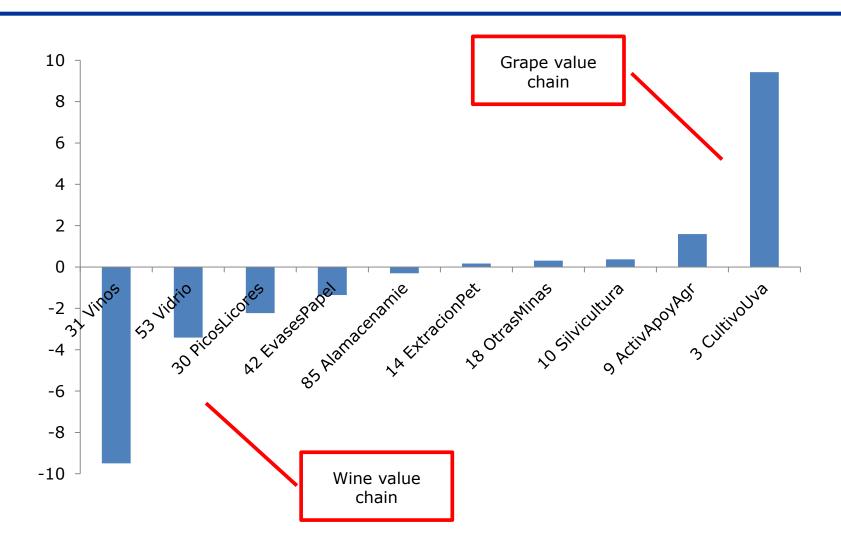
Exogenous


Percent Change

Contribution to %GDP


Macro results (in % change)

	Total	Subtotal			
	1 Otal	Quantity	Quality		
Real GDP from expenditure side	-0.067	-0.031	-0.036		
Aggregate real investment expendiutre	0.000	0.000	0.000		
Real houselhold consumption	-0.028	0.027	-0.055		
Export volume	-0.052	-0.035	-0.017		
Aggregate real government demands	-0.001	0.001	-0.001		
Import volume	0.014	-0.024	0.037		
Real GDP from income side	-0.067	-0.031	-0.036		
Use of capital	0.000	0.000	0.000		
Use of labor	-0.006	0.021	-0.028		
Indirect taxes	-0.004	0.004	-0.009		
Technical change	-0.057	-0.057	0.000		


Impacts on selected commodities (in % change)

Sectoral results – Activity level (% change)

Labor absorption - short run (% change)

Structural Analysis of Sectoral Activity Results*

Dependent Variable: ACT SECT

IZ: -1-1	T - 4 - 1	Subtotal				
Variables 	Total	Quantity	Quality			
WINE SH	-4.205***	-1.006**	-3.199***			
	(0.301)	(0.432)	(0.132)			
HH SH	-0.089***	,	-0.048***			
_	(0.032)		(0.018)			
D GRAPE	-4.143***	-4.064***				
_	(0.118)	(0.174)				
D_WINE	-3.945***		-3.145***			
_	(0.098)		(0.054)			
EXP_SH		-0.121**	0.051**			
		(0.058)	(0.022)			
MAT_SH		-0.121				
		(0.076)				
Constant	0.023*	0.073	0.012			
	(0.013)	(0.045)	(0.008)			
Observations	111	111	111			
R-squared	0.977	0.899	0.975			

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Note: *ACT_SECT = percentage change in sectoral activity level; WINE_SH = share of total sales to the wine sector; HH_SH = share of total sales to households; D_GRAPE = dummy for the grape sector; D_WINE = dummy for the wine sector; EXP_SH = share of total sales to exports; MAT_SH = share of materials in total costs.

Sensitivity Analysis Results: Export Demand Elasticity for Wine

	Benchmark				2x			5x		
	Total	Quantity	Quality	Total	Quantity	Quality	Total	Quantity	Quality	
Household consumption										
Wine grapes	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Table grapes	-4.932	-4.717	-0.215	-5.099	-4.736	-0.363	-5.398	-4.770	-0.628	
Piscos and liquors	-0.450	-0.414	-0.036	-0.472	-0.415	-0.057	-0.503	-0.416	-0.088	
Wine	0.129	-1.017	1.145	1.060	-0.901	1.961	2.784	-0.687	3.471	
Exports										
Wine grapes	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Table grapes	-6.308	-6.289	-0.019	-6.330	- 6.294	-0.035	-6.374	-6.304	-0.070	
Piscos and liquors	-0.329	-0.514	0.186	-0.175	- 0.491	0.316	0.104	-0.448	0.551	
Wine	-4.788	-0.644	-4.143	-8.182	-1.102	-7.080	-14.429	-1.946	-12.483	
Output										
Wine grapes	-3.194	-0.751	-2.443	-5.197	-1.023	-4.174	-8.881	-1.524	-7.357	
Table grapes	-5.789	-5.749	-0.040	-5.826	-5.755	-0.071	-5.897	-5.768	-0.129	
Piscos and liquors	-0.793	-0.951	0.157	-0.656	-0.927	0.271	-0.397	-0.883	0.486	
Wine	-3.951	-0.822	-3.130	-6.517	-1.171	-5.346	-11.236	-1.813	-9.423	
Macroeconomic aggregates										
Real GDP from expenditure side	-0.067	-0.031	-0.036	-0.096	-0.035	-0.061	-0.147	-0.042	-0.104	
Aggregate real investment expendiutre	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Real houselhold consumption	-0.044	0.043	-0.088	-0.114	0.033	-0.147	-0.236	0.016	-0.251	
Export volume index	-0.159	-0.107	-0.052	-0.201	-0.112	- 0.089	-0.277	-0.122	-0.155	
Aggregate real government demands	-0.006	0.005	-0.011	-0.015	0.003	-0.018	-0.029	0.001	-0.030	
Import volume index, CIF weights	-0.043	0.075	-0.119	-0.138	0.062	-0.200	-0.305	0.038	-0.343	
Aggregate employment, wage bill weights	-0.017	0.056	-0.073	-0.075	0.047	-0.122	-0.176	0.032	-0.209	

Next steps (room for collaboration)

Estimate models linking grape crop yields and wine prices to climatic conditions

Quantity and quality estimates for Chile

Update elasticities (key parameters)

Modeling integration to deal with uncertainties

- Climate anomalies (short term variability)
- Climate change scenarios (long term averages)

Include "land" as a specific primary factor

https://ideas.repec.org/p/spa/wpaper/2019wpeco n37.html

Economics Just accepted

A Bad Year? Climate Variability and the Wine Industry in Chile

Eduardo Haddad¹, Patricio Aroca², Pilar Jano³, Ademir Rocha⁴, Bruno Pimenta⁵

¹Department of Economics, University of São Paulo (USP), São Paulo, Brazil. Email: ehaddad@usp.br

²Business School, Adolfo Ibáñez University (UAI), Viña del Mar, Chile. Email: patricio.aroca@uai.cl

³Business School, Adolfo Ibáñez University (UAI), Viña del Mar, Chile. Email: pilar.jano@uai.cl

⁴Department of Economics, University of São Paulo (USP), São Paulo, Brazil. Email: ademir.rocha@usp.br

⁵Department of Economics, University of São Paulo (USP), São Paulo, Brazil. Email: brunoproencapp@usp.br