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Abstract. A prototype spatial computable general equilibrium model is
developed and illustrated by a numerical example. The theoretical basis is a
complete Arrow-Debreu equilibrium under perfect competition. The leading
principle of model design is parsimony: The specification restricts the num-
ber of parameters in a way allowing for a model calibration relying on a
limited data base, which is readily available in a country with a well devel-
oped statistical service. No “data generating” first stage, using entropy max-
imisation or other methods not in line with the philosophy of microeco-
nomic equilibrium analysis, is required.

1. Introduction

Multiregional input-output (MIO) analysis is one of the standard methods
in the tool box of empirical spatial economics. One of its strengths is its
ability to take fully account of interregional interindustry interdependencies.
Whatsoever, among others, the following three objections have been raised
against MIO models.

First, MIO models are not flexible due to the fixed-coefficients assumption,
which is particularly inconvenient with respect to trade coefficients.
Second, MIO models do not sufficiently take account of income-expendi-
ture interdependencies.
Third, MIO models are one-sided demand driven, such that effects coming
from the supply side, like cost and capacity variations, can not be modelled
appropriately.

In recent years, computable general equilibrium models are coming up
[17], which are already available as multiregional multiindustry variants
[9, 10, 12, 18]. They do not suffer from any of the three aforementioned
drawbacks of MIO models, while preserving all its modelling capacities.
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Therefore spatial computable general equilibrium (SCGE) models seem to
be the natural candidates for a new generation of applied interregional
interindustry models. Why are they not yet a popular tool in applied work?
This is probably because most regional scientists would subscribe to
Oosterhaven’s statement [13, p. 147] that general equilibrium models “are
not operational at all”. They are supposed to be difficult to understand and
to be awfully costly in terms of data requirements and computational effort.

It is the aim of this paper, by presenting a simple prototype SCGE
model, to demonstrate that this needs not be true. Of course, there exists no
upper bound to the cost of such a model, if we want to build all details of
the real world into it. But if we are content on making plausible assump-
tions about things which we can not observe for acceptable costs, and if
we are satisfied by calibration instead of econometric estimation, SCGE
can be cheap and still highly satisfying from a methodological point of
view.

2. A SCGE-model with NCES functional forms

2.1 Basic ideas

We develop a model for a closed economy withI sectors,i =1, ... ,I and R
regions,r =1, ... ,R. There are three types of activities, production, which is
done by a number of representative firms, transport, which is carried out by
a number of “transport agents”, and final demand, which is the activity of
a number of representative households, who earn their income by selling to
firms primary factors, certain given amounts of which are their property.
For the sake of simplicity, there is no public sector in this economy, and
final demand is not subdivided into components like consumption, invest-
ment etc.

In order to keep data requirements low, we apply the so-called pooling
concept in interregional trade, which was introduced by Moses and Chen-
ery. According to this concept, all commodities produced by sectori, say,
in various regions and delivered to regions, say, for intermediate or final
use, are first merged into a pool of commodityi in region s, from where
they are delivered to intermediate or final users (see [3]). Thus, no direct
link exists between producers and customers. Conceptually, within each
sector goods in the place of production (“outputs”) have to be distinguished
from goods in the pool of the region of consumption (“pool goods”), and
output as well as pool goods are to be distinguished by region. Thus, in
each sector, there are 2R distinct economic goods and the same number of
distinct prices.

Each region sheltersI representative firms, one representative house-
hold, andI transport agents. Firmi in region r produces the output of sec-
tor i in region r by a linear-homogeneous production function, taking pool
goods of all kinds,i = 1, ... ,I, from the regional pool and primary factors of
all kinds,k=1, ... ,K, as inputs.

368 J. Bröcker



Transport agenti in region s is responsible for transforming outputs of
sectori in all regions,r =1, ... ,R, includings itself, into pool goods of kind
i available ins. Transport agents also have a linear-homogeneous technol-
ogy at their command for transporting commodities to the region of desti-
nation and merging them into a pool.

Finally, households earn their income by selling the factors, which they
own, to the firms, and expend it completely for commodities in the pools
of the region where they reside. The amount of factors owned by the
households is exogeneous.

We assume perfect competition. Firms, transport agents and households
are well informed about all prices and take them as given. Firms and trans-
port agents maximise profits, which in view of linear-homogeneity implies
that in equilibrium prices equal minimal unit cost and no profits are left.
Households maximise utility under their budget constraint.

The only thing which is left to be done now is to specify functional
forms of technologies and preferences. We could deliberately choose from
the full menu of functional forms offered by the econometric literature. One
has to choose with care, however, in order to limit the costs.

2.2 Formal structure

We begin by listing all endogeneous variables. Numbers in parenthesis
point to the equation of the equilibrium system, which is “responsible” for
the determination of the respective variable. Superscriptsi, j =1,. . . , I
refer to sectors, superscriptsk=1,. . . ,K to primary factors, subscripts
r,s=1,. . . ,R to regions.

Quantities:

xi
r Output of sectori in regionr (10)

dj
s Final demand ofj-goods in regions (7)

Prices:

pi
r Price of one output unit of sectori in regionr (1)

qi
s Price of one unit of the pool good of sectori in regions (4)

wk
r Price of one unit of factork in regionr (9)

IO coefficients:

as
ij Input of pool goods of sectori per unit output in sectorj

in regions (2)
cs

kj Input of factork per unit output in sectorj in regions (3)
tirs Delivery of output of sectori in regionr per unit

of pool-good in regions. (5)
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Income and utility:

yr Household’s income in regionr (8)
ur Household’s level of utility in regionr (6)

In contrast to MIO analysis, IO coefficients and final demand vectors are
endogeneous, the former depending on prices, the latter on prices and in-
comes. We first describe the behaviour of firms in order to derivea’s and
c’s from cost minimisation, then that of transport agents in order to derive
t’s from cost minimisation, and finally that of households in order to derive
d’s from utility maximisation.

Technologies and preferences will be specified by nested functions with
constant elasticities of substitution (NCES-function). They are explained in
the appendix (section A below). It is convenient to work with the cost
function, which is dual to the production function. It assigns the minimal
unit costs to the vector of input prices.

Any NCES-function is completely specified by its substitution structure
and a vector of position parameters having the same dimension as the input
vector. In our notation a NCES cost-function withn inputs is written as a
function of 2n arguments,n input prices andn position parameters. The
respective substitution structure is regarded as given and not shown explicitly.

2.2.1 Firms.The firm j in regions produces the outputj with intermediate
inputs i =1,. . . , I, taken from the pool in regions, and with primary inputs.
There areK of them, indexed byk=1,. . . ,K. The firm’s technology is com-
pletely specified by its NCES unit-cost function cfj (qs,ws;a

j,cj).
qs:= (q1

s, . . . ,qI
s) and ws:= (w1

s, . . . ,ws
K) are the price vectors for pool goods

and primary factors in regions, respectively. aj:= (a1j, . . . ,aIj ) and
cj:= (c1j, . . . ,cKj ) are the corresponding vectors of position parameters. Note
that neither the function nor the position parameter bear a regional index,
which means that within each sector firms in all regions produce by the
same technology, an assumption justified by nothing but the desire to keep
data requirements low.

In equilibrium, the output price equals minimal unit costs (otherwise
supply would be either infinity or zero), which gives the first equation:

pjs � cf j�qs;ws; a j; c j�: �1�

According to Shephard’s lemma [20, p. 54], the cost minimising input coef-
ficients are the derivatives of the cost function with respect to price, which
gives:

aijs �
@cfj�qs;ws; a j; c j�

@qis
; �2�

ckjs �
@cfj�qs;ws; a j; c j�

@wks
: �3�
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At this stage, the design of the tree structure of the NCES technology
can be left open. It depends on intuition and the availability of information
on the respective elasticities of substitution. A traditional design is shown
in Fig. 1, allowing for substitution only between primary factors.

2.2.2 Transport.Next, we have to specify the transportation technology.
Remember that there areI transport agents per region. Transport agenti in
region s uses up commodities produced in sectori in all regions,
r =1,. . . ,R, for generating the pool of commodityi in regions. This trans-
formation is also described by a NCES production function, transforming
inputs from the various regions into an “output”, namely a commodity of
kind i in the pool in regions. Using a NCES function in this context al-
lows for taking account of product diversity. Purchases are not completely
concentrated to the region with the lowest cif prices, because products from
different regions are not regarded as identical. The degree of homogeneity
within a sector is reflected by the elasticity of substitution (or the elastici-
ties of substitution in case of nesting). This approach to handling inter-
regional substitution is called Armington’s assumption in international trade
modelling (according to Armington [2]).

The specification of the transportation technology has to take into ac-
count that transportation uses up resources, the amount of which depends
on economic distance. If we would take that literally, we had to assume
transport agents to require transport services, produced by a special trans-
port sector, as additional inputs, beyond commodities which have to be
transported. Theoretically this is no problem, but it makes the model struc-
ture rather complicated in practice.

This is why we fall back on Samuelson’s [16] iceberg model, which sim-
ply means that a certain percentage of the transported commodity itself is used
up during transportation. This is plausible in case of oil transport, when the oil
is partly used up as fuel, while a tanker crosses the Atlantic, whereas it seems
rather strange in general. It could be argued, however, that pure costs of trans-
portation anyway are only a small part of distance costs involved in interre-
gional trade. The main part are costs for communication, services, storage,
and others. They may be regarded as a joint product of the firm supplying
the commodity. Thus, its output consists of the delivered commodities plus
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these services, which are paid by the customers and used up, while the com-
modity is delivered from the source to the destination.

Let the transport rategi >0 be the share of commodityi lost per unit of
distance, and letzrs denote the distance fromr to s. Then the amount arriv-
ing in s, if one unit of outputi has been sent fromr to s, is exp (–gizrs),
which is less than unity, ifzrs is positive.

The transport agent’s activity can now be thought of as being separated
into two parts: One is transporting the outputs from all regions of origin to
the region of destination, whereby they are partly used up; the other is
merging the amounts left, after all commodities arrived in the region of
destination, into the pool. The latter is regarded as a transformation process
subject to a NCES technology characterised by the unit-cost function
cti�vis; #i�: vis :� �vi1s; . . . ; viRs� is the vector of prices per unit of commod-
ities arriving ins from regionsr =1,. . .R. As there are no costs of transpor-
tation other than the loss of a certain percentage of the respective commod-
ity, we havevi

rs=pi
r exp (gizrs). Notice that the NCES functions, according

to which commodities from different regions are pooled, vary over sectors,
but not over regions of destination. Cost minimisation of transport agents
then yields

qis � cti�vis; #i�;

tirs �
@cti�vis; #i�

@virs
exp �gizrs�:

The latter equation takes account of the fact that the quantity sent off from
r exceeds that arriving ins by the factor exp (gizrs). Note thattirs is the de-
livery from r in terms of output units produced inr per unit of pool good
in s. With the definition

c~t
i
s�pi;#i� :� cti�vis;#i�

the latter two equations are equivalently written as

qis � c~t
i
s�pi; #i�; �4�

tirs �
@c~t

i
s�pi;#i�
@pir

: �5�

2.2.3 Households.It is well known in duality theory of modern microeco-
nomics that a household’s preferences are completely specified by his ex-
penditure function ehs (qs,us), assigning to the price vectorqs the minimal
expenditure required for attaining utility levelus. It is non-decreasing,
linear-homogeneous, concave inqs and increasing in the utility levelus [20,
p. 122–123].
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The equilibrium level of utility is obtained from the equality

ys � ehs�qs; us�; �6�

whereys is the household’s income. Demand is obtained as

djs �
@ eh �qs; us�

@qjs
�7�

by Hotelling’s theorem, which is the same as Shephard’s lemma, but stated
in a different context.

Again we could choose from the full menu of functional forms in the
econometric literature like CD, LES, CES, Translog, and AIDS [7, 11]. In
order to keep in line with what we have assumed hitherto we choose a
NCES form, though it is somewhat inconvenient in so far as it implies uni-
tary income elasticities for all goods, contradicting empirical evidence. A
different choice, however, would require additional information in the cali-
bration process.

The NCES expenditure function has the form

eh�qs; us� � us ch �qs; ��

with NCES cost function ch and vector of position parameters
d=(d1, . . . ,dI). All households are assumed to have identical preferences.
thus, neither ch nord has a regional index.

Equations (1) to (7) determine output prices and pool prices for all com-
modities in all regions, the IO coefficients, final demand and utility in all
regions, given the factor prices and incomes in all regions. Model parame-
ters are the vectors of position parameters in the cost functions of firms,
transport agents, and households, respectively, as well as distances and
transport rates.

As already mentioned, households earn their income by selling exoge-
neously fixed amounts of factors to the firms. Letf k

rs denote the amount of
factor k in r, owned by the household ins. Selling the factor services the
household earns an income

ys �
X
r;k

f krsw
k
r : �8�

Finally, factor markets have to clear:X
s

f krs �
X
i

ckir x
i
r : �9�

Outputsxi
r are obtained from the standard linear system of IO equations
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xir �
X
s

tirs

�
dis �

X
j

aijs x
j
s

�
: �10�

Equations (1) to (10) determine the 10 groups of endogeneous variables
listed above (see p. 3), given all NCES functions with their respective vec-
tors of position parameters, and given the amounts of production factors.

3. Solving the SCGE-model

The system of Eqs. (1) to (10) is highly non-linear. General existence theo-
rems, however, imply that a solution always exists if

P
s f

k
rs > 0 for all k,r.

The solution is determined only in terms of relative prices, which means
that in any solution prices and incomes may be multiplied by an arbitrary
positive scalar to obtain another solution. Uniqueness can not be guaran-
teed, but the weaker property of regularity in terms of relative prices holds,
which means that generically no further solution exists in a sufficient small
neighbourhood of any solution [6]. In other words, generically solutions are
isolated points in price space. The word “generically” means that inciden-
tally isolation may not hold, but this can only happen on a set of measure
zero in parameter space. An arbitrary small change of parameters would re-
cover isolation in this case.

The problem of numerical solution can be reduced to the problem of
finding the vectorw of relative factor prices clearing the factor market,
which means solving theKR equationsX

s

f krs � fd k
r �w�

for the KR-vectorw:= (w1, . . .,wR), fdk
r denoting the factor demand function

for factor k in region r. There are globally convergent fixed-point algo-
rithms doing the job. They are usually based on the homotopy principle.
The algorithms follow the homotopy path, the start point of which is
known and the end point of which is the unknown solution. Path following
is possible either by simplicial approximation [19] or by a continuation
method like the prediction-correction method [1, 5]. In practice, however, a
globally converging technique is rarely required, and a standard Newton
method – if it converges – is much faster.

The values of the factor demand function for a given vector of factor
prices are obtained as follows:

1. Insertws into (1).
2. Solve the 2IR Eqs. (1) and (4) for the twoIR-vectors of output pricesp

and pool pricesq.
3. Insert prices into (2), (3), and (5) and calculate coefficients.
4. Calculate incomes by (8) and then final demand vectord by (6) and (7).
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5. Solve the linear system (10) for the output vectorx.
6. Insert into the RHS of (9) to obtain the factor demand.

Only step 2 needs further elaboration. After inserting Eqs. (4) forqs into
Eq. (1), the Eqs. (1) are an interdependent system inp, given w (as well as
the vectors of position parameters). Writep=g(p,w) for this system, for
short. Due to linear-homogeneity one has

g�p;w� � Ipp� Iww; �11�

with Ip and Iw denotingg’s Jacobians with respect top andw. Thenth step
of a Newton procedure for the system is the solution of

p�n� � g�p�nÿ1�;w� � Ip�p�n� ÿ p�nÿ1��

for p(n), which by Eq. (11) reduces to

p�n� � Inÿ1p p�n� � Inÿ1w w:

Superscriptn–1 means that the respective Jacobians are calculated with
prices from the last step,p(n–1). Using the derivative properties (2), (3)
and (5) this means explicitly

pjs�n� �
X
ir

tirsa
ij
s p
i
r�n� �

X
k

ckjs w
k
s ;

with coefficients calculated by inserting prices from the previous step. In
other words, one simply iterates Leontief’s price system, adjusting coeffi-
cients in each iteration to changes in prices.

4. Calibrating the SCGE-model

Calibrating a CGE-model means to fix its parameters such that certain
benchmark data are exactly reproduced in the equilibrium solution. We say
that a model is “just identified” by a given set of benchmark data if, in the
family of models emerging from different choices of free parameters, there
is one and only one member reproducing these data. It’s somewhat an art
to design a CGE model such that it is just identified by a set of readily
available benchmark data.

The structure of the described model is made up of the following com-
ponents:

1. The substitution structure in the NCES functions cf, ct, and ch;
2. the interregional distances;
3. the transport rates;
4. the vectors of position parameters in these three types of NCES func-

tions;
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5. the amounts of the various factors in the regions owned by the house-
holds.

If these things are known, an equilibrium solution can be computed. Unfor-
tunately, one benchmark does not suffice for calibrating the model with
respect to all five aspects. The substitution structures have to be given.
Usually they are obtained by gathering estimates of elasticities in the litera-
ture and designing substitution trees more or less following tradition and
intuition.

Interregional distances are assumed to be given as well. For the mo-
ment1 we also assume that the transport ratesgi for each sector are known
in form of data about transportation cost per kilometre as percentages of
the respective commodity values. Then position parameters and factor
amounts remain to be calibrated.

The position parameters are the vectorsai, ci, i =1,. . ., I, making up an
((I+K)× I)-matrix, the vectors#i; i � 1; . . . ; I , making up an (R× I)-matrix,
and theI-vectord. National IO data can be used for calibrating thea’s, c’s,
andd’s, and regional employment data for calibrating the#’s.

Concerning point 5, an (R×R×K)-array with elementsf k
rs has to be cali-

brated. Unfortunately there is usually no information on interregional in-
come flows. Thus, for the sake of simplicity, let us assume that households
own factors only in their own region, such thatf k

rs=0 for k=1,. . .,K, if
r 6�s. Then only an (R×K)-matrix of factor stocks is left to be calibrated.2

We assume that there are data on regional factor prices, which allow for
a calibration with respect to thef’s.

Summarising this, calibration of the model means to finda’s, c’s, d’s,
#’s, and f’s such that the equilibrium solution coincides with benchmark
observations with respect to

• national IO-data in value terms,
• regional employment data by industry, and
• regional factor prices.

Let k=1 denote labour andLi
r benchmark observations on regional employ-

ment by sector. Furthermore, letw̌r
k be the benchmark observations on re-

gional factor prices, and let us introduce the notation for national bench-
mark IO data given in Table 1. TheA’s denote interindustry flows, theD’s
final demand, and theC’s primary inputs, all in value terms.

For calibrating the model, the following equations are introduced in ad-
dition to Eqs. (1) to (10):

Aij �
X
s

qisa
ij
s x

j
s; i; j � 1; . . . ; I �12�

Di �
X
s

qisd
i
s; i � 1; . . . ; I �13�
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Ckj �
X
s

wks c
kj
s x

j
s; k � 1; . . . ;K ; j � 1; . . . ; I ; �14�

�wkr � wkr ; k � 1; . . . ;K; r � 1; . . . ;R; �15�

Lir � c1ir xir; i � 1; . . . ; I ; r � 1; . . . ;R: �16�

It is suggested that the model is just identified by these equations. Un-
fortunately, we are not yet able to give a rigorous proof of this suggestion.
As a first hint to its validity we count equations and unknowns: There are
I2 Eqs. (12) andI2 unknown a’s, I Eqs. (13) andI unknown d’s, KI
Eqs. (14) andKI unknown c’s, KR Eqs. (15) andKR unknown f’s, and
finally IR Eqs. (16) andIR unknown #’s. Some additional reflections
reveal, however, that among these equations 2I+1 equations are redundant,
i.e. they are implied by all other equations. This leaves 2I+1 degrees of
freedom which can be closed by choosing units for theI outputs,I pool
goods and the level of utility. This choice is arbitrary and will not affect
any comparative static result obtained by the calibrated model. We close
these degrees of freedom by imposing the additional restrictions

X
r

xir �
X
r

pirx
i
r; i � 1; . . . ; I ; �17�

X
r

#ir � 1; i � 1; . . . ; I ; �18�

X
i

di � 1: �19�

Restriction (17) fixes units of measurement for outputs such that the aver-
age benchmark price in each sector equals unity. Restriction (18) fixes
units of measurement for pool goods. The rationale underlying (18) is to let
pool prices equal output prices, if output prices do not vary over regions
and if transport costs vanish.
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A11 � � � A1j � � � A1I D1

..

. ..
. ..

. ..
.

Ai1 � � � Aij � � � AiI Di

..

. ..
. ..

. ..
.

AI1 � � � AIj � � � AII DI

C11 � � � C1j � � � C1I

..

. ..
. ..

.

CK1 � � � CKj � � � CKI



Admittedly the coincidence between the number of equations and un-
knowns is no convincing argument. Another hint to the validity of the sug-
gestion is that a simple iterative procedure delivers a solution not depend-
ing on the starting point, according to practical experience. The procedure
starts with a set of position parameters, which are adjusted in each iteration
until convergence, taking the following steps (factor prices are set equal to
�wkr from the beginning):

1. Solve (1) and (4) for prices.
2. Calculate IO coefficients according to (2), (3) and (5).
3. Calculate output according to (16)

xir � Lir=c1ir ; i � 1; . . . ; I ; r � 1; . . . ;R:

4. Calculatef k
r according to

f kr �
P
i
ckixir; k � 2; . . . ;K; r � 1; . . . ;R

(see (9) withf k
rs=0 if r 6� s�:

5. Calculate incomes according to (8),

yr �
P
k

f kr �wkr ; r � 1; . . . ;R :

6. Calculate final demand according to (6) and (7).
7. Adjustaij until (12) is fulfilled, i, j =1,. . . , I.
8. Adjustdi until (13) is fulfilled, i =1,. . . , I.
9. Adjustckj until (14) is fulfilled, k=1,. . . K, j =1,. . . I.

10. Adjust#ir until the RHS in (10) equalsxi
r, i =1,. . ., I, r =1,. . .,R.

11. If position parameters remained almost constant, as compared to the
preceding iterate, stop; else go to 1.

5. A numerical example

As described above, four kinds of data are required for implementing the
model empirically:

• National IO data in value terms,
• regional employment data by industry,
• regional factor prices, and
• interregional distances.

In addition, all substitution structures (including the respective elasticities
of substitution) as well as transport ratesgi – one for each sector – must be
known.

In this section we show a little numerical experiment demonstrating the
tractability of the approach. It is based on a purely hypothetical data set for
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a closed economy, made up by 5 regions, 4 sectors, and 3 primary factors
of production (land, labour, and capital, say).

Table 2 shows national IO data in value terms for one year. This table is
like Table 1, but filled with numbers.

Employment by region and sector is given in Table 3 and factor prices
by region and factor in Table 4.3 The distance matrix is obtained by calcu-
lating Euclidean distances between points located as shown in Fig. 2.
Transport ratesg by sector are given in Table 5. Note that a fairly strong
distance impact is assumed in the example. In sector 2 (the same is true for
sector 3) more than half of a delivery is lost during transport from region 2
to 3, for example.
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Table 2. National IO data

From to j = D
P

1 2 3 4

i =1 4 3 2 5 18 32
2 16 6 5 9 4 40
3 2 2 6 6 10 26
4 0 10 2 8 14 34

k=1 6.8 3.8 2.8 1.1
2 1.8 12.7 3.4 1.5
3 1.4 2.5 4.8 3.4P

32 40 26 34

Table 3. Employment by region and sector

r i

1 2 3 4

1 0.204 0.834 0.843 0.161
2 1.635 0.167 0.211 0.161
3 0.409 0.834 0.702 0.321
4 3.269 1.167 0.351 0.321
5 0.817 0.333 0.351 0.040

3 Note that for each factor only ratios between factor prices of different regions have to be
known, because the choice of units for measuring factor quantities is arbitrary. The factor
price in one arbitrary region can be set equal to one for each factor (or the average over
regions can be set equal to one) for fixing units of measurement.



Finally, substitution structures have to be specified. The cost functions
ct for transportation are assumed to be non-nested CES with elasticities of
substitution by sector as given in Table 5 (r-trans).4 For production the 2-
level NCES structure shown in Fig. 1 is chosen, with a Leontief form on
the upper level (i.e.r0=0) and sector specific elasticities of substitutionrf

between factors as given in Table 5 (r-fact). The household’s cost function
ch is non-nested CES with elasticity of substitution equal to 0.8.

The model’s calibration yields estimates of output prices (rows are sec-
tors, columns regions)

p �
0:97 0:97 1:03 0:99 1:07
0:90 0:88 1:18 1:04 1:05
0:99 0:95 1:13 1:12 0:96
0:97 0:99 1:05 1:03 0:96

0BB@
1CCA

and prices for pool goods

380 J. Bröcker

Table 4. Factor prices by region and factor

r k

1 2 3

1 1.19 0.62 1.14
2 0.81 0.61 0.52
3 1.07 1.43 1.14
4 1.11 0.97 1.34
5 1.43 1.03 0.57

Fig. 2. Assumed location of regions

4 It can be shown that this specification implies trade flows fulfilling a gravity equation with
distance function exp (–ki zrs). k

i is easily estimated from observed trade flows. Knowingki

allows for inferring on eithergi or ri, if ri or gi are known from other sources.



q �
1:24 1:16 1:28 1:10 1:23
1:28 1:55 1:36 1:31 1:44
1:35 1:79 1:44 1:55 1:36
1:10 1:13 1:12 1:11 1:14

0BB@
1CCA:

Note that the price level in each sector is arbitrary, because the choice of
units for quantities is arbitrary. Only interregional price ratios within each
sector convey information. As already mentioned, scaling rule (17) makes
weighted average output prices equal unity in each sector for the bench-
mark. Due to scaling rule (18) the pool prices’ excess over unity reflects
the transport costs included in these prices.

From calibrating the model we also get estimates of regional factor in-
puts for the two factors not given in the data (not shown here) as well as
estimates of regional incomes obtained by multiplying regional factor in-
puts by regional factor prices:

�y1; . . . ; y5� � �11:37 4:32 7:43 14:03 8:84�:
Finally, an interesting information is the value of the household’s cost func-
tion ch(qs;d). It is the natural regional price index in this model. The per-
centage deviation of this index for regions 2,. . . ,5 from the respective in-
dex of region 1 is (6.20 3.83 –1.22 1.79)%. This index may also be inter-
preted as a complex measure of peripherality, taking the spatial distribution
of all factors as well as preferences and technologies into account. In our
example region 2 is the most peripheral (i.e. the one with the highest cost
of living), region 5 is the most central one according to the index.

As an exercise in comparative statics we calculate effects from a reduc-
tion of distance costs – due to infrastructure investment, for example. Let
us assume that the distance for transports from region 1 to region 5 is
halved, while all other distances (including the one from 5 to 1) remain
constant. As a consequence, all prices, outputs, trade flows, and incomes
change. We will not present all the figures, but confine ourselves to the
most interesting result, namely the welfare impact of the infrastructure in-
vestment. It is conveniently measured by the relative equivalent variation
(REV). It is defined as the percentage increase of pre-investment income a
household would need, in order to get the after-investment utility under
pre-investment prices. More precisely, it is
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Table 5. Parameters

i

1 2 3 4

g 0.028 0.047 0.062 0.016
r-trans 4.3 0.5 2.5 1.8
r-fact 0.8 1.5 3.0 2.5



REVs :� 100
�
eh�qs; ûs�
eh�qs; us� ÿ 1

�
� 100

�
ŷs=ch�q̂s; d�
ys=ch�qs; d� ÿ 1

�
:

qs, ys, and us denote pre-investment,̂qs; ŷs, and ûs after-investment prices,
incomes, and utilities, respectively. Due to the homotheticity of preferences,
REV equals the percentage change of real income, with the cost function
taken as price index. Our calculations give

REV � �6:57 ÿ1:10 ÿ1:09 ÿ0:15 4:67�%:
As expected, regions 1 and 5 directly affected from the distance reduction
are gaining. The other regions are loosing slightly because they suffer from
higher factor prices in regions 1 and 5.

6. Conclusions

Though we have given only a small numerical example, it should be clear
that the approach is tractable also for applications with more sectors and re-
gions, different types of households, etc. Trade flows with the rest of the
world are easily included. The fundamental advantage of the specification
is that the model can be calibrated using readily available data only. No
“data generating” process, which is the common practice starting point in
MIO analysis, is required. Usually the theoretical basis of this kind of “data
generating” is obscure and inconsistent with the spirit of CGE modelling.
Instead, the philosophy of our approach is simple: Don’t put more parame-
ters into the model as you have independent observations (econometricians
usually want us even to put much less parameters than observations into
the model), and follow this principle from the very beginning in designing
your model.

It is obvious that such a model leaves many things open. A straightfor-
ward extension is to introduce factor mobility with capital reacting on fac-
tor price and households reacting on utility. Another is to introduce dy-
namics through endogeneous investments. The formal structure, however,
becomes much more complicated if rational expectations are assumed for
investment and saving behaviour – as it is usually done in neoclassical
model building.5

A final extension is introducing endogeneous technical chance. This
would make the formal structure even more complicated, leading to applied
models in the spirit of recent developments in the theory of endogeneous
growth (see [8, 15]). Progress in this direction may be possible, if the
model is kept very small in terms of numbers of regions and sectors in-
cluded.
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5 See [4] for a dynamic 1-sector 2-regions model with migration and capital mobility.



A The NCES (nested constant elasticity of substitution) system

Let x:=(x1, . . . ,xI)>0 be a vector of input quantities andp:= (p1, . . . ,pI)>0
the respective vector of input prices. Inputs are distinguished by industry or
region of origin. (We drop the convention of pointing to industries by
superscripts and to regions by subscripts.) With any concave linear-homo-
geneous production functionF* (x) is associated a (unit) cost function

F�p� � inf
x
fp � xjF��x� � 1g; 6

another concave linear-homogenous function showing the minimal costs for
one unit of output, taking pricesp as given in the market.F andF* form a
polar pair of concave linear-homogenous functions [14, p. 136–139]. It is
well known thatF is differentiable, ifF* has strictly concave level sets,
and thatFp, the gradient ofF, is the vector of cost-minimising inputs per
unit of output (Shephard’s lemma).

NCES is a particularly convenient form of such a pair of functions. It is
obtained by nesting a series of CES functions. It is completely specified by
its substitution structure and anI-dimensional vector of position parame-
ters. The substitution structure is described by a substitution tree and a vec-
tor of elasticities of substitution.

What is meant by a substitution tree should be sufficiently clear from
the example in Fig. 3. It consists of a set of nodes,i =1,. . . , I, I +1,. . . ,J,
and a set of directed arcs. Nodes 1 toI, the ends ot the tree, represent the
inputs, nodeJ, the root, represents the output, and nodesI +1 to J–1 repre-
sent artificial intermediate goods. The output and intermediate goods are re-
garded as being produced according to a CES production-function, using
the goods represented by their respective predecessor nodes as inputs.
Thus, one CES function with its respective elasticity of substitution is asso-
ciated with each node except the ends of the tree.

The NCES function is defined recursively as follows:

F��x� :� f �J �x�

with

f �j �x� :�
�P

i2Nj�f �i �x�=bij�
rjÿ1
rj

� rj
rjÿ1

if j>I,

xj else.

8<:
rj >0, rj 6� 1, is theelasticity of substitutionassociated with nodej > I. As
shown below, the limiting casesrj?0, rj?1, and rj?? can be in-
cluded as well.Nj is the set of predecessor nodes of nodej > I.7 bij, i ∈Nj ,
are theweight parametersof the CES function.

Operational spatial computable general equilibrium modeling 383

6 The operator “·” denotes the scalar product of two vectors, i.e.p·x:=p1x1+ . . .+pIxI.
7 In Fig. 3 these sets areN7= {2, 3, 4}, N8= {5, 6}, N9= {1, 7}, N10= {8, 9} for nodes 7–10.

They are empty sets for the end nodes 1 to 6.



It’s a matter of straightforward calculus not to be repeated here, to find
the polar function of a CES function. Nesting these polar functions yields a
recursive formula forF,

F�p� :� fJ�p�
with

fj�p� :�
�P

i2Nj�fi�p�bij�
1ÿrj
� 1
1ÿrj

if j>I,

pj else,

8<: (20)

and another recursive formula forFp

Fp�p� � �b1; . . . ; bI� ;

bi :� b
1ÿrj
ij

�
fj�p�
fi�p�

�rj

bj if i < J

1 else.

(
(21)

In the last formulaj denotes the follower ofi, i.e. i ∈Nj .
F and Fp are evaluated by first working through the substitution tree

from the ends to the root for calculatingfj , j > I, and then backwards for
calculatingbi .

For specifying a NCES function, theb-parameters are required beyond
the substitution structure. Obviously, one such parameter is associated with
each arc in the substitution tree, of which there are more thanI (except in
the trivial non-nested case). As mentioned above, however, no more thanI
parameters are required for a complete specification, given a certain substi-
tution structure. This is so because differentb-parameters yield identical
CES-functions.

Consider the family of NCES functions obtained by choosingb’s, given
a certain fixed substitution structure. Then it is easily seen that for any
p̄>0 and a:= (a1, . . . ,aI)>0 there is one and only one memberF in this
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Fig. 3. Substitution tree



family such thatFp (p̄)=a. Thus, given the substitution structure, theI-di-
mensional vectora, which Fp shall attain at some price vectorp̄, is a valid
parametrisation. The vector to be attained atp̄=(1,. . . , 1) could be taken as
the parameter vector, for convenience. We call this vector the vector of
position parametersof the NCES function.

In order to prove this statement,F (p) is reformulated in terms ofa and
p̄, whereby theb’s are eliminated. Defining

gi�p� :� fi�p�
fi��p� ; i � 1; . . . ; J;

and dividing Eq. (20) byfj (p̄) yields

F�p� :� gJ�p�fJ��p�
with

gj�p� :�
�P

i2Nj

�
gi�p� fi��p�fj��p� bij

�1ÿrj� 1
1ÿrj

if j >I,

pj=�pj else

8<: (22)

From Eq. (21) we obtain

fi��p��bi
fj��p��bj

�
�

�bij
fi��p�
fj��p�

�1ÿrj
;

with �b’s and�b’s such that (21) is fulfilled withp= p̄ anda=��b1; . . . ; �bI�.
The LHS-term is the share of goodi in the value of goodj under p̄,

i ∈Nj. More precisely we have

yij :� fi��p�
�bi

fj��p��bj
�
P

k2Mi
ak�pkP

k2Mj
ak�pk

:

For i > I the setMi denotes all ends, which are nodei’s direct or indirect
predecessors, i.e.

Mi := {k| 1≤ k ≤ I and the path fromk to the root meetsi}. 8

Insertingy into (22) and taking into account thatfJ��p� � a � �p, a new re-
cursive formula forF is obtained, which only depends ona and p̄ instead
of b:

F�p� :� gJ�p�a � �p
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8 In Fig. 3 we have, for example,M10={1–6} andM9={1–4}.



with

gj�p� :�
�P

i2Nj�gi�p��
1ÿrjyij

� 1
1ÿrj

if j>I,

pj=�pj else.

8<:
As to the limiting cases for the elasticity of substitution mentioned before,
the CES reduces to the Leontief case forrj?0 with fixed quantities of the
components per unit of the composite good. In this case we have

gi�p� :�
P

i2Nj gi�p�yij if j>I,

pj=�pj else.

�
The caserj?? means complete substitutability. The composite good is
simply a weighted average of its components, and we have

gj�p� :� mini2Njfgi�p�g if j>I,
pj=�pj else.

�
For rj?1 we obtain the Cobb-Douglas case with constant value shares.
Evaluate loggj for j > I: You get the undefined expression 0/0 forrj =1.
According to L’Hospital’s rule, however, we find the limit forrj?1 by
inserting first derivatives with respect torj at rj =1 in the nominator and
denominator. This yields

gj�p� :�
Q
i2Nj gi�p�yij if j>I,

pj=�pj else.

�
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[9] Hewings GJD, Gazel R (1998) Regional and interregional impacts of the US-Canada
free trade agreement. Annals of Regional Science 32 (in press)

[10] Hirte G, Genosko J (1988/89) Regionalisierte empirische allgemeine Gleichgewichtsana-
lyse: Eine Einfu¨hrung mit einem einfachen Modell fu¨r die Bundesrepublik Deutschland.
Jahrbuch fu¨r Regionalwissenschaft 9/10:32–56

[11] Lau L (1984) Functional forms in econometric model building. In: Griliches Z, Intrili-
gator MD (eds) Handbook of Econometrics, Vol III, pp 1515–1566. North-Holland,
Amsterdam

[12] Meagher GA, Parmenter BR (1998) Regional issues in the monash model. Annals of
Regional Science 32 (in press)

[13] Oosterhaven J (1981) Interregional Input-Output Analysis and Dutch Regional Policy.
Gower, Aldershot

[14] Rockafellar RT (1970) Convex Analysis. Princeton University Press, Princeton, NJ
[15] Romer PM (1990) Endogenous technological change. Journal of Political Economy

98:S71–S102
[16] Samuelson PA (1954) The transfer problem and transport cost, ii: analysis of effects of

trade impediments. Economic Journal 64:264–289
[17] Shoven JB, Whalley J (1984) Applied general-equilibrium models of taxation and inter-

national trade: an introduction and survey. Journal of Economic Literature 22:1007–1051
[18] Trela I, Whalley J (1986) Regional Aspects of Confederation. Volume 68 for the Royal

Commission on the Economic Union and Development Prospects for Canada. University
of Toronto Press, Toronto

[19] Van der Laan G, Talman AJJ (1986) Simplicial algorithms for finding stationary points,
a unifying description. Journal of Optimization Theory and Applications 50:165–182

[20] Varian HR (1984) Microeconomic Analysis, 2nd edn. Norton, New York

Operational spatial computable general equilibrium modeling 387


