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Chapter 3

The Johansen Approach
3.1 Introduction

In this chapter we consider a class of general equilibrium
models in which an equilibrium is a vector, V, of length n satisfying a

system of equations
F(V) = 0, (3.1.1)

where F is a vector function of length m. We assume that F is differenti-
able and that the number of variables, n, exceeds the number of equati-
ons m. Via (3.1.1) consumer demands will be viewed as arising from
budget-constrained utility maximization, zero pure profits will apply,
and demands will equal supplies. Preferences and technologies are
represented in (3.1.1) by differentiable utility and production functions.

Linearization will play a key role. We will be concerned with the
approach pioneered by Johansen (1960). Because system (3.1.1) can be
very large and involve a wide variety of nonlinear functional forms, from
a computational point of view it might be quite intractable. Johansen's
approach is to derive from (3.1.1) a system of linear equations in which
the variables are changes, percentage changes or changes in the
logarithms of the components of V.

Since system (3.1.1) contains more variables than equations we
assign exogenously given values to (n-m) variables and solve for the
remaining m, the endogenous variables. In applications of Johansen
models, many different allocations of the variables between the
exogenous and endogenous categories can be made. For example, if we
are analyzing the effects of a change in the tariff on footwear, then this
variable is exogenous. On the other hand, if we want to calculate the
change in the tariff which would be required to ensure a given level of
footwear employment, then the footwear tariff is an endogenous variable
and footwear employment is exogenous.

For the purpose of introducing Johansen's computational
approach, we can make some illustrative computations with a small
system devoid of economic content. We will assume that system (3.1.1)
consists of 2 equations and 3 variables and has the form

ViV -1 =0 and V + V,-2=0. (3.1.2)

For our illustrative computations with (3.1.2}, we will assume that the
exogenous variable is V3 and the endogenous variables are V; and Vs,
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74 Notes and Problems in Applied General Equilibrium Economics

With this assignment of the variables to the exogenous and
endogenous categories, we can express the endogenous variables as
functions of the exogenous variable as follows:

~1/2

V| = V3 and  Vy,=2-vy/?

(3.1.3)
where we assume (as is often the case in economic models) that only
positive values for the variables are of interest. With a solution system
such as (3.1.3), we have no difficulty in evaluating the effects on the
endogenous variables of shifts in the exogenous variable. For example,
assume that initially we have

vl= (), Vg V) = (1,1,1), (3.1.4)

a situation which satisfies (3.1.2). Then we want to evaluate the effects
on V] and V, (employment and prices, say) of a shift in V5 (the level of
protection) from 1 to 1.1. By substituting into (3.1.3), we find that the
new values for V] and Vp are 0.9535 and 1.0465. We conclude that a 10
per cent increase in V3 induces a 4.65 per cent reduction in V; and a
4.65 per cent increase in V.

Johansen-style computations make use of an initial solution, VI.
with results being reported usually as percentage deviations from this
initial solution. The initial solution (i.e., the set of initial values for
prices, quantities, tariffs, etc.) is known from the input-output data
used in setting many of the parameters of the model (see Exercise 3.3).
However, the computations for a Johansen model differ from the simple
approach using (3.1.3) because the complexity and size of the system
(3.1.1) normally rule ocut the possibility of deriving from it explicit
solution equations. Instead, in the Johansen approach we solve a
linearized version of (3.1.1).

To obtain the linearized version, we first derive from (3.1.1) a
differential form AV)v = 0, (3.1.5)

where A(V) is an m x n matrix whose components are functions of V.
The n x 1 vector v is usually interpreted as showing percentage changes
or changes in the logarithms of the variables V. However, in some
models v is interpreted as the vector of changes in V. In the former
case, A(V) is chosen so that (3.1.5) can be used in evaluating elasticities
of endogenous variables with respect to exogenous variables. In the
latter case, (3.1.5) can be used in evaluations of derivatives. In either
case, the linearized (and approximate) version of (3.1.1) used in a
Johansen-style computation is generated by replacing theI variable
matrix A(V) on the LHS of (3.1.5) by a fixed matrix, usually A(V').
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The derivation of (3.1.5) is by total differentiation of either
(3.1.1) or a transformed version of it. The procedure can be illustrated
in the context of (3.1.2). We totally differentiate the LHSs of (3.1.2) and
set these total differentials to zero recognizing that if (3.1.2) is to
continue to be satisfied after a disturbance in the exogenous variables,
then the changes in the LHSs must be zero. Thus, we write

dv
V.V, O V2 1
{ 173 1} dv, | = 0. (3.1.6)

1 1 0 J|dVg

This is a system of the form (3.1.5) where v is interpreted as the vector
of changes in the variables V. To obtain a system where v is a vector of
percentage changes, we transform (3.1.6) into!

9 0 1 100(dV;)/Vp
Vi/2 Vp/2 0 100(dV3)/ Vs

If we replace the (dV;/Vj)s in (3.1.7) by (dinV,)s then, on dividing all
equations by 100, we obtain a system of the form (3.1.5) in which v is
the vector of changes in the logarithms of V:

dinVy -0 . (3.1.8)2
Vi/2 V5/2 0 dinvg

1 The first equation in (3.1.7) is derived by dividing the first equation in
(3.1.6) by V21V3. In the second equation in {3.1.7) we have divided through by
2. It is customary to use share coefficients in the linear-percentage-change
system. Notice that V,/2 and V,/2 are the shares of V| and V, in the sum of
2 More formally, we can derive (3.1.8) by first transforming (3.1.2) into
2NV, + InVa= In(1), and exp(inV,) + exp(IinV,) = 2.
Then by total differentiation, we obtain

leading to (3.1.8). You will find later in this section that although the A(V)
matrices in the percentage-change and log-change versions of (3.1.5) are
identical, the two versions give different approximations for the effects on
the endogenous variables of finite changes in the exogenous variables.
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In a Johansen computation, a system of the form (3.1.5)
effectively replaces (3.1.1) as the model. In computations of how far the
endogenous variables will move from their initial values in response to
given movements in the exogenous variables, A(V) is evaluated at V = A
Then (3.1.5) is rewritten as

AgVY) ve + Ag(V) vg = 0, (3.1.9)
where v, is the m x 1 subvector of endogenous components of v, VB is
the (n-m)x 1 subvector of exogenous components and Aa[V) and
AB(V) are appropriate submatrices of A(V) i.e., Aa(V )is the m x m
matrix formed by the columns of A(V)) corresponding to the
endogenous variables and AB(V) is the m x (n — m) matrix formed by
the columns corresponding to the exogenous variables. Finally, (3.1.9)
is solved for v, in terms of vg giving3

= A Wh AV vg (3.1.10)

vy = B(V) vy, (3.1.11)

where B(VI) is defined by the right hand side of (3.1.10). If v is a vector
of percentage changes or changes in logarithms, then the typical
element, B, J(V) of B(V] is the elasticity evaluated at vl of the ith
endogenous variable with respect to the jthb exogenous variable. If v is a
vector of changes, then B, [V ) is a derivative rather than an elasticity.

or more compactly

Computations (3. 1 9) - (3.1.11) can be illustrated via systems
(3.1.6) to (3.1.8). With V = vl = (1,1,1), (3.1.6) becomes

2 0 17 rdvy
dvy | = 0. (3.1.12)
1 1 o LdV3

On choosing variable 3 to be exogenous, we can rewrite (3.1.12) as

2 0 dVI 1
+ { :I dV3=0. (3.1.13)
1 1 dV2 0
3 We assume that the relevant inverse exists. If this is not true, then the

Johansen method will fail. However, if Aa(VI) is singular, then it is likely
that our classification of endogenous and exogenous variables is
illegitimate. That is, it is unlikely that system (3.1.1} implies that V, is a
function of Vj in the region of VI, In this case, any solution method should
fail. See Dixon et al. {1982, section 35).
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RN
That is = - dva . (3.1.14)
dVy 11 0 3
dvy -0.5
Hence = [ }dVS . (3.1.15)
dv, 0.5

It is reassuring to note from (3.1.3) that when V5 = 1,

8V3 ——2[V3) = 5, an 8V3_ 5 V3 = D,

We see that the 2 x 1 matrix of derivatives of the endogenous variables
with respect to the exogenous variable evaluated at vl s correctly
revealed on the right hand side of (3.1.15). If we set V = V! in either
(3.1.7) or (3.1.8), we can derive

v, 2 0

N
= — V3 .
V2 05 05 0
. V1 -0.5
that is, - [ :|V3. (3.1.16)
V2 0.5

where (v, v9, v3) can be interpreted as either a vector of percentage
changes or a vector of changes in logarithms. Again we can check our
result by using (3.1.3) which gives

1 _1 1 _1
Mg =-5 MV 2V and mpg= 572/ % .

where 1, 5 and ngy 5 are the elasticities of variables 1 and 2 with respect
to variable 3. With V = V1, we see that N, 3 =-05and ny 5 = 0.5,
confirming the result in (3.1.186).

Johansen's computational approach is an example of displace-
ment analysis.? It allows us to evaluate derivatives or elasticities of
endogenous variables with respect to exogenous variables without

4 Many of you will be familiar with displacement analysis from derivations
of the properties of demand elasticities in the utility maximizing model of
consumer behaviour and the cost minimizing model of producer behaviour.
See, for example, Dixon, Bowles and Kendrick (1980, Exercises 2.6 and 4.186).
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having to obtain explicit forms for the solution equations [(3.1.3) in our
example]. All that is required are some simple matrix operations. It
should be emphasized, however, that these operations give us the values
of the derivatives or elasticities only for the initial values, vl | of the
variables. When we move away from V!, the derivatives or elasticities
will change.

A little experimentation with (3.1.15) and (3.1.16) indicates that
the Johansen approach is satisfactory for computing the effects on the
endogenous variables of small changes in the exogenous variables. For
example, by using (3.1.16) with the v;s interpreted as percentage
changes we would say that a 10 per cent increase in V5 would induce a
5 per cent reduction in V| and a 5 per cent increase in V,. This is close
to the answers (-4.65 and 4.65) which we found earlier by substituting
into (3.1.3). Even greater accuracy is obtained in this particular
example if we interpret the v;s as changes in logarithms. Then the
exogenous shock is

dinVy = In(1.1) - In(1) = 0.095310.
On applying this shock in (3.1.16) we obtain
dinV; = -0.047655 and dinV, = 0.047655, (3.1.17)

implying that V; and V, change by -4.65 and 4.88 per cent
respectively.® However, when we make large changes in Vg, (3.1.16)
may not give a satisfactory approximation to the effects on V; and Vi,
Assume, for instance, that we increase Vq by 100 per cent (i.e., from 1
to 2). Then the percentage-change version of (3.1.16) implies that V,
will fall by 50 per cent to 0.5 and V, will increase by 50 per cent to 1.5.
The correct values, derived from (3.1.3), are that V; will fall by 29.29
per cent to 0.7071 while V, will increase by 29.29 per cent to 1.2929.
With the logarithmic version of (3.1.16), the shock is

dinVy = In(2) - In{l) = 0.693147.

This produces dInV, = ~0.346574 and dinV, = 0.346574. leading to the
conclusion that the 100 per cent increase in V3 reduces V| by 29.29 per
cent and increases V, by 41.42 per cent. Although the logarithmic
implementation of (3.1.16) has generated considerably greater accuracy

5 The solution for the effect on V; of a change in V3 is free from linearization
error. This is because the solution function, (3.1.3), for Vl can be written as
InV; =-0.5lnV,. Thus, no error is introduced by evaluating the change in
InV, as 0.5 times the change in InV;.



Chapter 3: The Johansen Approach 79

than the percentage change version, there is still an uncomfortably
large error in the result for V.

When faced with a large change in the exogenous variables, one
approach is to make a sequence of Johansen-style computations. For
example, if we want to evaluate the effects of a 100 per cent increase in
V3, we can first use (3.1.16) to generate the effects of a 50 per cent
increase. This would take us from the initial situation (V = VI) to one
where V = VI + AVgy with AVgy denoting our estimate of the change in V
arising from the increase in V5 from 1 to 1.5. Then we can reevaluate
the elasticity matrix, B, at V = vl 4+ AV50 and use the reevaluated matrix
in computing the effects of moving V3 from 1.5 to 2. Where greater
accuracy is required, we break the change in the exogenous variable
into a larger number of smaller steps.

This extended or multi-step Johansen method is the subject of
Exercises 3.7 and 3.8. It has been used by Dixon et al. (1982, sections
8 and 47). Their experience suggests that the original Johansen
method is normally satisfactory. This finding is supported by Bovenberg
and Keller {1981). It appears that in policy-oriented work, the changes
in the exogenous variables are likely to be sufficiently small that no
serious errors are introduced by treating the B matrix as a constant. In
situations where it was necessary to allow the B matrix to move, Dixon
et al. (again supported by Bovenberg and Keller) found that highly
accurate solutions were obtained by applying their extended Johansen
method with very few steps.

A final issue for this section concerns the interpretation of the
changes, percentage changes or log changes in the linearized Johansen
system. Johansen (1960) interpreted the variables of his linearized sys-
tem of equations as growth rates. As described by Taylor {1975, p.100),

“Basically, he proceeds by logarithmically differentiating the
equations characterizing a Walrasian competitive equilibrium
with respect to time in order to get a simultaneous system of

equations which are linear in all growth rates.”
(Emphasis added)

Johansen was concerned mainly with forecasting; with making
predictions about the development of the Norwegian economy over
future periods. Nowadays, the more common use of Johansen models is
in policy analysis in which the main concern is not the future state of
the economy but how that state will be affected by, for example, the
adoption of a proposal to increase protection against imports. Whereas
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the time-derivative interpretation of the variables is appropriate in
forecasting, it is not appropriate for policy projections.

In forecasting, the initial solution vl is interpreted as the
actual state of the economy at time T where T is the current date or a
recent date in history. Then the forecasts are made of growth rates in
the exogenous variables relying on information from outside the model.
For instance, demographic information might be used to forecast the
growth of the labor force. Forecasts of movements in the foreign
currency prices of imports and exports might be supplied by experts on
particular commodity markets. For many exogenous variables, simple
extrapolations from past trends might be used. Once a complete set of
forecasts has been made for the exogenous variables for the period T to
T + 10, say, the growth rates for the period in the endogenous variables
can be forecast from the model.

Compared with forecasting, policy projections require littlie
information on the vector of exogenous shocks, vg. The appropriate
values for the components of vg are usually suggested in a
straightforward way by the particular application at hand. For example,
if we are interested in the effects of a 5 per cent increase in the real
wage rate, then the percentage change in the real wage is set
exogenously at 5 while all other components of vg are set at zero. The
model is then used to compute how different the endogenous variables
would be from their levels in the vector VI if the wage rate were 5 per
cent higher; i.e., it is used to provide a comparison between two
possible states of the economy at a given point of time, one with the
real wage rate 5 per cent higher than the other.

3.2 Goals, Reading Guide and References

By the time you have finished with this chapter, we hope that
you will have developed the basic skills required for constructing and
using a Johansen-style general equilibrium model. In particular, we
hope that you will

(1) be able to describe the four essential parts of the theoretical
structure;

(2) understand the derivation of the linearized system from the
nonlinear structural form;

{3) be familiar with the role of input-output tables in providing both
the share coefficients for the linearized system and an initial
solution for the nonlinear structural form;
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(4) Dbe able to distinguish the interpretation of the variables of the
linearized system in forecasting applications from the inter-
pretation which is appropriate for policy projections;

(5) be able to discuss the advantages and disadvantages of con-
densing the linearized system;

(6) be aware of various solution strategies for handling large sparse
systems of linear equations;

(7) appreciate the flexibility inherent in being able to adopt
different closures (choices of exogenous variables);

(8) Dbe prepared to interpret solution matrices and to trace out the
relationships between sclution matrices computed for different
closures;

(9) understand the source of the linearization errors occurring in
Johansen computations;

(10) know how these linearization errors can be reduced to
insignificance by a multi-step Johansen procedure supple-
mented by Richardson’s extrapolation; and

(11) have a facility for deriving linearized demand and supply
functions, suitable for use in a Johansen model, from a wide
variety of utility maximizing, cost minimizing and revenue
maximizing models.

Reading guide 3 and the problem set contain material which
will help you to achieve these goals. The readings are referred to in
abbreviated form. Full citations are in the reference list which also
includes other references appearing in the chapter. The problem set is
presented in three parts. Part A uses a small model to illustrate the
basics of the Johansen approach. We suggest that you complete the
problems in this part before doing any reading. Part B is concerned
with linearization errors and their elimination. Part C will give you
some practice in deriving linearized demand and supply functions.
Exercises on more specialized aspects of Johansen models (e.g., the
treatment of international trade, tariffs, taxes and investment) are
included in Chapter 4.
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Reading Guide to Chapter 3*

Johansen models employ the familiar technique of displacement
analysis, i.e., a system of diferential equations is used to describe
the displacement of equilibrium caused by the movements in
exogenous variables. We suggest that you review a few applications
of displacement analysis. Among the more famous are Meade's
(1955) analysis of trade and welfare, Harberger's (1962) study of the
effects of taxing capital, Frisch's (1959) and Houthakker's (1960)
derivations of the restrictions on household demand functions flowing
from the adoption of an additive utility function, and Jones' (1979}
collected essays in the theory of international trade. Textbook
treatments of displacement analysis include Intriligator (1971,
particulary sections 7.4 and 8.3), Lancaster (1968, particulary
chapters 4 and 8), and Dixon, Bowles and Kendrick (1980,
particulary E2.5, E2.6 and E2.17).

Finished with the Stylized Johansen model of part A in the
problem set and would now like to work through a more

realistic illustrative model?

Yes I—_T\JB_:I

Read Dixon, Parmeter, Sutton and Vincent
(DPSV) (1982, sections 3-7). Section 6 will be
helpful if you want more examples of how the
flexibility of a model is increased by making
allowance for different closures. Also see Taylor
etal. (1980, pp. 49-60) for a discussion of
different closures in the context of an illustrative
log change macro model.
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Reading guide to Chapter 3 (continued)

o
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Read Powell (1981) for a view of where Johansen models fit into
the general field of economy-wide modeling. This paper also
contains comments on why we build models, on forecasts versus
policy projections and on many other modeling issues.

The classic work on Johansen models is of course Johansen
(1960). You should at least glance through the whole book
and read chapter 3.

Four modern examples of Johansen models are Taylor and
Black (1974), Staelin (1976), Keller (1980) and DPSV (1982).
Taylor and Black analyse the effects of changes in protection in
Chile under a variety of production function specifications.
Staelin's study is also a model of protection, this time applied to
the Ivory Coast with an emphasis on noncompetitive pricing
behavior. Keller presents a very carefully explained model of tax

incidence in the Netherlands while DPSV describe a large multi-

purpose model of Australia. We suggest that you review at least

one of these models or any other operational Johansen model that
interests you. Be sure to find out (i) how the model is used (forecasts
or policy projections}, (ii) how the share coefficients and other para-

meters are estimated, (iii) what closures are adopted, (iv) what is

done about linearization errors and (v) what special features there

are in theoretial structure and why they are included.

'
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Reading guide to Chapter 3 (continued)

Interested in the linearization issue and want more information than
is contained in part B of the problem set?

[Fes] (o]

Look at Johansen (1960, pp. 217-222 in the 1974
edition only) which describes a dynamic correction
method. A similar approach is adopted by Taylor
etal. (1980, pp. 599-60). The approach described
in part B of the problem set originates in DPSV
(1982, particulary sections 8, 35 and 47).

Review goals listed in section 3.2. Exit if you have attained them

* For full citations, see the reference list for this chapter.
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PROBLEM SET 3

A A STYLIZED JOHANSEN MODEL
The implementation of a Johansen model typically includes the
following steps:
{I) the development of a theoretical structure consisting of

(i) equations representing household and other final demands
for commodities,

(ii) equations for intermediate and primary-factor inputs,
(iti) pricing equations relating commodity prices to costs, and
(iv) market clearing equations for primary factors and

commodities;

(IT) a linearization of the model equations to generate a system
which is linear in percentage changes of the variables and in
which most of the parameters are cost and sales shares;

(IT11) the use of input-output data to provide estimates for the relevant
cost and sales shares; and

(IV}) the development of flexible computer programs for condensing
and manipulating linear systems.

In Exercises 3.1 ~ 3.6 we use a simple Johansen model to give
you an overview of the four steps. We refer to this model as the Stylized
Johansen model.
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Exercise 3.1 The theoretical structure for the Stylized Johansen
model

In this exercise, we ask you to derive the equations for a simple
Johansen model. The model has two commodities, two primary factors
and one final user (the household sector). We use the subscript O to
refer to the final user. Subscripts 1 and 2 denote the two commodities
and the two industries which produce them. Subscripts 3 and 4 refer
to the primary factors labor and capital. We assume that:

(i) the household sector chooses its consumption leveis of goods 1
and 2 (X4 and X55) to maximize the Cobb-Douglas utility
function

_ %10 %20
U = X10 0 (E3.1.1)
subject to the budget constraint

where Y is the household expenditure level, and P, and P, are
the prices of goods 1 and 2. o;4 and 0, are positive parameters
summing to one.

(ii) industry j, for j = 1 and 2, chooses its inputs le, ij, X3j and X4j

4
to minimize Cj = 2 P, Xij (E3.1.3)
i=1
subject to
- AX Ux®2ix"3ix*4
Xj -Alej ij X3j X4j . (E£3.1.4)

where the X;:;s are the purchases of good 1, good 2, labor and
capital by indlustry J: KJ is the output of good j by industry j; and
Aj and the oy;s are positive parameters with

! 4
i=1
Thus, we assume that whatever industry j's output level might
be, the industry will minimize the costs of producing that
output. In (E3.1.4) we assume that j's production technology is
Cobb-Douglas.

(iii) our model accounts for all costs so that in each industry the
value of output equals the value of the inputs. That is,
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4
Cj = PX;= DX forj=12. (E3.1.5)
i=1

(iv) output levels for goods 1 and 2 (X, and X,) and employment
levels for labor and capital (X3 and X,} satisfy

2
D Xy=X . i=12 (E3.1.6)

j=0

and 2
> X=X .1=34. (E3.1.7)

j=1

Equation (E3.1.6) implies that demands equal supplies for goods
1 and 2. For primary factors, we simply assume that demands
are satisfied, i.e., total employment of labor (X3} is the sum of
the demands for labor by the two industries. Similarly, the
employment of capital (X,) is the sum of the demands for capital
by the two industries.

(v)  the household budget (Y) equals factor income, that is

Y =P3Xq+PyX, . (E3.1.8)
Now do the following:

(a) Show that the household demand functions are
)(10 = aioY/Pi, i=1,2 . (E3.1.9)
{(b) Prove that the production function (E3.1.4) exhibits
constant returns to scale.

(c) Show that the input demand functions for industries 1 and

2 are given by 4

- %t i i
Xy =@ I1P /P, i=1,..4 j=1.2 (E3.1.10
t=1

where 4
Q= I1 (atj)"’tj /A (E3.1.11)
t=1

(d) Show that Oqs fori=1, ..., 4 and j = 1,2, is the share of total
costs in industry j represented by inputs of i.
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(e)

(f)

(g)

(h)

Derive from (E3.1.5) and (E3.1.10) the equations
4

p=g I1 pft-l, j=12. (E3.1.12)
t=1

What feature of the production functions (E3.1.4) is
important in explaining why the zero-pure-profit conditions
(E3.1.5) may be rewritten as relationships between prices
with no quantity variables? That is, what allows us to
eliminate the st and Xijs in going from (E3.1.5) to
(E3.1.12)?

Show that once we have made assumptions (iJ - (iv), then it
is unnecessary to also include (v}. In fact, (E3.1.8) is
derivable from: (E3.1.9) and (E3.1.5) - {(E3.1.7). Thus,
(E3.1.8) may be omitted from our description of the
economy.

Examine the system of equations (E3.1.9), (E3.1.10),
(E3.1.12). {E3.1.6) and (E3.1.7}). Assume that these
equations are satisfied by

Xjo i=1.2; Xy i=1, . 4, J=1.2; Xjand B, i=i. ... 4:and Y
Show that they continue to be satisfied when we modify this
solution by multiplying all monetary variables (i.e., P, i=1,... 4;
and Y) by any 6 > O while leaving all real variables unchanged.

The system of equations (E3.1.9), (E3.1.10}. (E3.1.12],
(E3.1.6), {(E3.1.7) and (E3.1.23)6 is the struciural form for
our Stylized Johansen model. It corresponds to the system
{3.1.1) in Section 3.1. How many variables do we have in
our structural! form? How many equations? Discuss
possible closures. Would the model be adequately closed if
we sel P53 and P, exogenously?

Answer to Exercise 3.1

(a)

On putting the ratio of the marginal utilities of the two goods
equal to the ratio of their prices, we find that

o7l Yoy %2071 _ p
“10%0" Koo 1 ®20%0 %og = Pi/Py

This equation can be simplified and rearranged as

{£3.1.23) is found in the answer to part (g) of this exercise.

6

ayoPeXog = agoP1X o
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Now we substitute P; X, out of the budget constraint (E3.1.2) to obtain

On recalling that a4 + 09y = 1. we establish {E3.1.9).

Notice that the as are budget shares. Under a Cobb-Douglas
utility function, the share of household expenditure going to each good
is independent of commodity prices and the level of total expenditure.

{b) Imagine an initial situation in which the input levels are 5(1 i=
1, ..., 4, giving an output of X;. Now assume that all input levels are
multiplied by 6 > 0 leading to a new output level, )_(j. (E3.1.4} implies
that

4
X, = A H?(;"J' (E3.1.13)
o
and 4
= { o~ N\
X o= 4 J1 laxij) g (E3.1.14]
i=1

Since Zic‘ij = |, we can rewrite (E3.1.14) as

4
= L
= oA 11 Xij’J (E3.1.15)
i=1
Hence, = _
X = 8%, . (E3.1.16)

Equation {E3.1.16) shows that the new output level is § times the oid
one. This establishes that (E3.1.4) exhibits constant returns to scale.

(c) The first-order conditions for industry j's cost minimization
problemz are
uij()%/}(ij) =F/A fori=1. ... 4 (E3.1.17)
and 4
- 1
X = A I1 Xy (E3.1.18)
t=1

where a is the Lagrangian multiplier. To go from these five equations to
the four input demand functions, we must eliminate A. Our strategy is
to obtain an expression for A in terms of input prices and output. Then
we substitute this expression back into (E3.1.17).
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We start by rearranging (E3.1.17) as
Xij -_—lainj/Pi N 1=1, hany 4. (E3.1.19]

Now we substitute from (E3.1.19) into (E3.1.18). On simplifying the
resulting equation by taking into account that the as sum to one, we
find that 4

r=g; I1 P‘tltl‘ , (E3.1.20)
t=1
where Q}- is defined in (E3.1.11). Finally we substitute from (E3.1.20)
into (E3.1.17) to obtain (E3.1.10).

(d) We could work from the input demand functions, (E3.1.10).
However, it is simpler to use (E3.1.17), from which we have

PXy; / thtxtj = hoyX; / thatjxj . (E3.1.21)

Since the as sum over the first subscript to one, the right hand side of
(E3.1.21) simplifies to oy;. Thus 04 is the share of j's costs represented
by inputs of i. Just as in part (a) we found that the Cobb-Douglas utility
function implies constant budget shares, here we find that the Cobb-
Douglas production function implies constant cost shares.

(e) By substituting from (E3.1.10)} into (E3.1.5) we obtain

4 4
_ *j i=
PX= X 0% Hpt . j=1.2. (E3.1.22)
i=1 t=1

Because the as sum to one, (E3.1.22) simplifies to (E3.1.12).

The key to the elimination of the X's is the constancy of returns
to scale in the production functions (E3.1.4). Equation (E3.1.5) says
that the value of output equals the cost of inputs. Equivalently, we could
say that average revenue per unit of output, P,, equals the average cost
per unit output. With a constant-returns-to-scale production function,
the minimum average cost per unit of output can be calculated from the
input prices. It is independent of the scale of output. Consequently, Pj
is independent of the scale of output. The average cost curve is flat.

(4] On multiplying the ith members of (E3.1.6) and (E3.1.7) through
by P;, and adding the resulting equations, we obtain

2 2 4 4
) PXio + 2 2 PiXjj = 2 PX
i=1

i=1 j=1 i=1
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Next we substitute from (E3.1.9) and (E3.1.5). This gives

2 4
Y+ 2PX = 2 PX.

j=1 i=1
That is,

This is an example of Walras’ law. Once we have assumed that
the total value of commodity outputs is equal to the total value of
commodity demands (intermediate plus household) and that it is also
equal to total costs (intermediate plus primary-factor), then we have
implied that total household expenditure equals total payments to
primary factors.

(g) When we use the modified solution to evaluate the left and right
hand sides of (E3.1.9) we find that

Since the original solution satisfies (E3.1.9), we know that

Xio = ®pY /B
Thus the modified solution satisfies (E3.1.9). We can establish similar
results for (E3.1.10), (E3.1.12), (E3.1.6) and (E3.1.7).

We conclude that in the system (E3.1.9), (E3.1.10), (E3.1.12),
(E3.1.6) and (E3.1.7), the absolute level of prices is indeterminate. It is
often convenient to remove the indeterminacy by setting one of the
prices at unity. We assume that

P, = 1. (E3.1.23)

Thus, good one becomes the numeraire or measuring stick. P; will be
the worth of good i in terms of units of good 1.

(h) Our structural form consists of 17 equations with 19 variables.
To close the model we set values for two variables exogenously. One
possible choice for the pair of exogenous variables is the primary factor
employment levels, X5 and X,. This choice would be appropriate if, for
example, we were interested in estimating the change in factor prices
which would be required to allow a 10 per cent increase in the
employment of labor over a period in which the capital stock in use was
expected to increase by 5 per cent. Another possibility for the
exogenous variables is Pq and X,. Here we might be interested in the
effects of changes in wages, P3, on the employment of labor, X4, in the
short run, i.e., a period sufficiently short for us to assume that the
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economy-wide capital stock, X,, is determined independently of
changes in wages.

A selection of exogenous variables which will not work is P5 and
P,. This can be explained in at least two ways. First, look at the two-
equation system (E3.1.12). This contains four variables P, Py, P53 and
P,. In part (g) we argued that P, can be set at unity and we added
equation (E3.1.23) to our model. If we set P5 and P, exogenously, we
see that (E3.1.12) is a two equation system determining just one
variable, P5. Only by chance will there be a value for P, which is
consistent with (E3.1.12}, (E3.1.23) and exogenously given values for
P53 and Py.

A second way to see that our model will not be closed adequately
with P53 and P4 as exogenous variables is to think about what determines
the size of the economy. If we did happen to have a solution for our
model in which all of the Xs and Y were endogenous variables, then we
would be able to generate further solutions simply by multiplying the Xs
and Y by any & > 0. We would have nothing to tie down the absolute size
of the economy. With P4 and P, as our exogenous variables, we have
over-determined the price side of our modei and under-determined the
real side.

Exercise 3.2 The percentage-change form of the Stylized Johansen
model

Derive the percentage-change version of the structural form
(E3.1.9), (E3.1.10), (E3.1.12), {E3.1.6), (E3.1.7) and (E3.1.23).

Answer to Exercise 3.2
In deriving the percentage-change form, we apply three rules:
The Product Rule, R=BPQ =r=p+q,

The Power Rule, R =BP% = r = ap,

and
The Sum Rule, R=P+Q=r1= pSP+qSQ,

where 1, p and q are percentage changes’ in R, P and Q, a and P are
parameters and Sp and SQ are the shares of P and Q in P+Q, i.e.,

Sp=P/(P+Q) and SQ =Q/ (P+Q) .

7 They can, equally well, be interpreted as changes in logarithms.
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Each of these rules is derived by totally differentiating the levels
expression. In applying the rules. we must be careful not to divide by
zero. Percentage-change or log-change forms are unsuitable for
variables which have initial values of zero. To overcome this difficulty, it
is sometimes convenient to work with transformed variables. For
example, we might include in a model the power of a tariff (one plus
the ad valorem rate) rather than the ad valorem rate. If the initial value
of the ad valorem rate is zero, then the initial value of the power of the
tariff is one. We will be able to calculate percentage changes or changes
in the logarithm of the power of the tariff but not in the ad valorem rate.

In our Stylized Johansen model, we will assume that there are
no variables whose initial values are zero. Therefore, we can apply our
three rules directly to the structural form (E3.1.9), (E3.1.10),
(E3.1.12), (E3.1.6), (E3.1.7) and (E3.1.23). We obtain

Xjo=y-p; . i=12, (E3.2.1)
4
Xij = )‘j - (pl - Z atj pt) N i= 1, ooy 4.j = 1,2, (E3.2.2]
t=1
4
pj = Z O‘tj Pt j=12, (E3.2.3)
t=1
2
2oxBy=x . i=12 (E3.2.4)
j=0
2
2 oxBy=x . i=34, (E3.2.5)
j=1
and p, =0, (E3.2.6)

where the lower case xs and ps can be interpreted either as percentage
changes or log changes in the corresponding upper case variables, and

Bij"'xij/xi’ i=1, ...4, j=0,12
That is, the Bijs are sales shares.

It is worth pausing to examine the system (E3.2.1) - (E3.2.6).
Often the assumptions underlying a model are more clearly
interpretable from the percentage-change form than from the original
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structural form. In the present model we see from equation (E3.2.1)
that all household expenditure elasticities have the value 1, all own
price elasticities are -1 and all cross price elasticities are zero. In
anything beyond an illustrative model, a more realistic specification
would be required, especially for the expenditure elasticities. Engel's
law implies that expenditure elasticities for food are usually less than
one, while those for clothing and consumer durables are usually greater
than one — see Houthakker (1957). Consequently, for practical work
we need more general descriptions of preferences than the Cobb-
Douglas utility function (E3.1.1). Perhaps the most popular choice in
applied general equilibrium modeling is the Klein-Rubin or Stone-Geary
utility function leading to the linear expenditure system (see Dixon,
Bowles and Kendrick, 1980, E2.3).

Equation (E3.2.2) says that in the absence of changes in relative
prices, industry j will change the volumes of all its inputs by the same
percentage as its output. This is a consequence of assuming constant
returns to scale. On the other hand, if the percentage increase in the
price of input i is greater than the percentage increase in a particular
index of all input prices, then industry j will substitute away from input
i. Its demand for input i will expand by less than its output. The
weights used in the index of input prices are the cost shares, i.e., the
os. Finally in (E3.2.2), notice that the price-substitution term could
have been written as csj[pi - Ztatjpt), where 6, = 1. In other words our
price-substitution term has an implied coefficient of one. This reflects
the well-known property of Cobb-Douglas production functions that the
elasticity of substitution between any pair of inputs is unity. Ideally, we
should for applied work adopt more general production functions so
that the coefficients on the substitution terms can vary according to the
input substitution possibilities available in different industries.
Production specifications are discussed further in Exercises 3.9 - 3.13.

Equation (E3.2.3) says that the percentage change in the price
of good j is a weighted average of the percentage changes in input
prices, the weights being cost shares. Equation (E3.2.4) says that the
percentage change in the supply of commodity i is a weighted average
of the percentage changes in various demands for i, the weights being
sales shares. Similarly, (E3.2.5) equates the percentage change in the
employment of factor i to a weighted average of the percentage changes
in the industrial demands for i. The weights are the shares in the total
employment of i contributed by each industry. The last equation,
(E3.2.6}, reflects our choice of good 1 as the numeraire.
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Exercise 3.3 Input-output data and the initial solution

(a) Use the input-output data shown in Table E3.3.1 to evaluate the
parameters of the structural form (E3.1.9), (E3.1.10), (E3.1.12),
(E3.1.6), (E3.1.7) and (E3.1.23). That is, evaluate a;; fori =
1,2; OLjj fori=1,.. 4andj=12; and Qj forj=1,2.

Hint: In evaluating the Q;s, assume that the quantity units underlying
the flows in Table E!3.3.1 are defined so that all prices are unity.

(b} Having evaluated the parameters of the structural form, we can
check any suggested set of values for prices and quantities for
consistency with our model. Check that the structural form
equations are satisfied by the values in the input-output table,
i.e., check that the model is solved by P; =1fori=1, ..., 4, Xy
=4, %91 =2,X3)=1.X4) =1, X, =8,X;9 =2, X959 =6, X35 = 3,
Xgo=1.%=12,X,0=2.X99=4.Y=6,Xg3=4and X, = 2.

Answer to Exercise 3.3

(a) From (E3.1.9) we know that the a;5s are budget shares. For
consistency with Table E3.3.1, they should be fixed at :

010=2/6=03 and 053=4/6=06,

where we use the notation 0.3 and 0.6 to denote 0.33... and 0.66... .

From (E3.1.10) we know that the 0458 fori=1,..,4andj=12
are cost shares. The values implied by Table E3.3.1 are

%11 %12 05 0.16
@21 %22 _ 025 05
gy Cg39 - 0.125 0.25
g1 Ogo 0.125 0.083

To evaluate the Q.s, we need to be able to tie down the Ajs; see
(E3.1.11). From (E3.1.4), it is clear that the values of the [Hs depend on
the units chosen for quantities of inputs and outputs. We adopt the
convention that one unit of good or factor i is the amount which costs 1
dollar in the base period, i.e., the period to which our input-output data
refer. Thus, without explicitly evaluating the Ajs, we can conclude from
(E3.1.12) that Qj = 1forj=12.
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Table E3.3.1
Input-Output Data {Flows in dollars)

Industry Households Total Sales

1 2
Commodity 1 4 2 2 8

2 2 6 4 12
Primary Labor 3 “ 1 3 4
Factors Capital 4 1 1 2
Production 8 12 6
(b) To check that the structural form equations are satisfied by the

suggested values, we can substitute into left and right hand sides. For
example, for i = 1, we have

LHS (E3.1.9) =2 and RHS(E3.1.9=(03)x6/1=2

Notice that our input-output data satisfv an important balancing
condition. The iotal value of inputs for each industry equals the total
value of sales. Where the share parameters® of a general equilibrium
model are set to be consistent with a balanced input-output table, we
can always use the table to deduce an initial solution to the structural
form equatfions. The initial solution contains information which can be
valuable in computing new solutions, especially if the exogenous shocks
under consideration are not too large. It is a strength of the Johansen
approach that it makes full use of the initial solution as a starting point.
for finding new solutions.

Exercise 3.4 Input-output data and the evaluation of A(V)

Compleie the representation in Table E3.4.1 of the linearized
system formed from (E3.2.1) - (E3.2.6) when the coefficients are
evaluated using the input-output data from Table E3.3.1. That is,
evaluate the A[VI) matrix.

8 In the Stylized Johansen model. the share parameters of the nonlinear
structural form (the as) are simple cost and budget shares. When we move
beyond Cobb-Douglas functions. then the share parameters (e.g.. the §'s in
the CES form, see Exercise 3.9) are less readily interpretable. It remains
true, nevertheless, that when their values are set for consistency with a
balanced input-output table, then the table reveals an initial solution to the
structural form.
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Table E3.4.1

The Transpose* of the Matrix A[\/J) for the Stylized Johansen Model:
Incomplete

(E3.2.1) (E3.2.2) (E£3.2.3) | (E3.2.4) | (E3.2.5)

(E3.2.6)

yi -1} -
x10] 1!
X90 1
X1 1

X921
X31

X41

X2
X22
X392

X492
Xl -1

X9

X3
X4
pi| ! 5

Do 1 {-.25
P3 -125
Pa -125 |

*  For typographical convenience we have listed the columns oi A{V') as rows.

Answer to Exercise 3.4
See Table £3.4.2.
Exercise 3.5 Condensing the Stylized Johansen model

In a detailed Johansen model, the dimensions, m and n. of A(V)
may be very large. For example, in the ORANI model of the Australian
economy both m and n are several million. Therefore, hefore we try to
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Table E3.4.2

Answer to Exercise 3.4: The Transpose of the Matrix A(V!) for the
Stylized Johansen Model*

(E3.2.1) (E3.2.2) (E3.2.3} | (E3.2.4) | (E3.2.5)

(E3.2.6)

yi-1 1| -1

X10| 1 -.25

X920 1 -3

Xl 1 1 -5

X921 1 -16

X31 1 -.25

X41 i -5

Xl2 1 -.25

X22 1 -5

X390 1 =75

X42 1 -5
X, SR U QY 1

Xo At 1

X3

X4
p1| 1 S5 |-51-5}-51.83]|-16]-16]|-16] 5 [-.16 1
P2 1 |-25] .75 1-25]-25)-5| 5 |-5)-5|-251 5

P3 ~-125]-.125|.875 |-.125]-.25 |-.25| .75 [-.25|-.125]-.25
Pa ~.125}-.125]-.125( .875 |[-083|-083]-083] .916 |-.125|-083

*  For typographical convenience we have listed the columns of A(VY as rows.
Numbers of the form .83, .16, etc. are to be read as .8333.... .1666..., etc.

implement a solution of the form (3.1.10), it may be necessary to

condense the linearized version of the model by eliminating some

equations and variables. That is, starting from the m x n system
AVlv=0

we derive a system of the form

A*(Vjv* =0
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where A* has the dimensions (m-1r) x (n-r), v* is a (n-r) subvector of v
and r is the number of eliminated variables.

(a) Condense the system (E3.2.1) - (E3.2.6) by eliminating
household demands, x;5, i = 1,2, and input demands, Xjj»
i=1, .., 4,j=12. That is, derive a seven equation system in
the nine variables, x;, p;, i=1, ..., 4and y.

(b) Using the data from Table E3.3.1, compute the coefficient
matrix A*(VI) of the condensed system.

(c} In condensing a Johansen model, what criteria would you apply
in selecting the variables to be eliminated?

Answer to Exercise 3.5

(a) We substitute the right hand sides of {(E3.2.1) and (E3.2.2) into
(E3.2.4) and (E3.2.5). The resulting 7 x 9 condensed system consists of

(E3.2.3), (E3.2.6), plus
2 4

v-P) B+ 2 0x - (- 2 oy plBy=x. i=12 (E35.1)

j=1 t=1
E [xj - {p; - z o Pyl Bij = x5, 1=3.4, (E3.5.2)
j=1 t=1

(b) See Table E3.5.1.

(c) First, we would avoid eliminating variables which we might want
to set exogenously in some applications of the model. For example, we
would not normally eliminate tax and tariff rates. In our Stylized
Johansen model, we would not choose factor supplies or factor prices
for elimination. Eliminated variables are necessarily endogenous.

Second, we would avoid eliminating key endogenous variables,
those which are likely to be of interest when we are analyzing and
presenting results. This criterion is not as important as the first.
Eliminated variables can usually be recovered quite simply by back-
solving. For example, if we used the condensed system (E3.2.3),
(E3.2.6), (E3.5.1) and (E3.5.2) in computing solutions for our Stylized
Johansen model, then by substituting values for x;, p;, i=1, ..., 4andy
into (E3.2.1) and (E3.2.2) we could extend our solution to include the
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Table E3.5.1
Answer to Exercise 3.5(b): The Matrix A*(V1) Jor a Condensed Form sf
the Stylized Johansen Model

Equation Variable
Nuinber
A e O T - T T Pp | P3 | Pg
iy, - -
(E3.2.3) .5 25 125 125
-18 8 -25 -.083
-. 5 -0 ¢ .l - Q83
(E3.5.1) 25 b 25 7083 5 25 125 082
-3 | -16 5 -.16 J083 [-.14583 | -.0625
(£3.5.2) =25 | =75 i -25 - 4375 | 78125 [-.09375
-5 -5 i -3 -375 | —1875 | .89583
(£3.2.6) 1
ten climinated variables x;q5, i = 1,2 and %, 1 = 1, ..., 4, j = 1.2.

Nevertheless, back solving involves extra coding and computer time and
it should be avoided if possible. Thus, we would include industry
outputs and industry employment levels in the condensed systeri:,
whereas we might exclude intermediate input flows.

Third, we would try to keep the algebra simple. Ideal targets for
elimination are variabies which appear in ro more than one or twoe
equations and for which we have explicit expressions in terms of
variables which are to be included in the condensed system.
Commodity flows te households and input flows to industries often meet
this criterion. For example, in the Stylized Johansen model, (E3.2.1)
and (E3.2.2) provide simple explicit expressions for x;,5, i = 1,2 and Xy
i=1, ... 4,j= 12 in terms of variables to be included in our condensed
system. In addition, each of the x5 and x;; appear in only one other
equation of the system (E3.2.1) - (E3.2.6]l, namely, in the relevant
market-clearing equation.

How much condensing should we do? This depends on the
programs we have available for solving linear systems. For c¢xample,
with the GEMPACK software package?, systems containing up to 1.006

9 See Codsi and Pearson {1988).
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equations can be solved on commonly available personal computers.
Hence, condensation is often unnecessary. Even for very large models
still requiring condensation, GEMPACK removes the algebraic drudgery,
users simply being required to specify which equations are to be used to
eliminate which variables. These automated condensation procedures
are less prone to error than use of pencil and paper.

Exercise 3.6 Two solution matrices for the Styltized Johansen model

In Exercise 3.3, we saw how the input-output data in Table
E3.3.1 provide an initial solution, v, for our Stylized Johansen model.
Then in Exercise 3.4, we evaluated the coefficients of the system
(E3.2.1) - (E3.2.6) at VI. This allows us to represent the model in the

linearized form I
AVYv = 0, (E3.6.1)

where A(V}) is the 17 ¥ 19 matrix whose transpose is shown in the body
of Table E3.4.2 and v is the 19 x 1 vector of variables listed in the left
margin of the table.

To solve the model we f{irst choose two variables to be
exogenous and we rearrange (E3.6.1) as in (3.1.9). Then, as in equations
(3.1.10) and (3.1.11), we compute the 17 x 2 matrix B(V!). This is our
sclution matrix. The typical element shows the elasticity at V! of the itP
endogenous variable with respect to the jth exogenous variable.

In Table £3.6.1 we have given two solution matrices. The first
was computed with the exogenous variables being x5 and x4, (employ-
ment of labor and capital). In this computation, the columns of A,{V])
are rows 1-13 and 16-19 of the transpose of A(V) as displayed in Table
£3.4.2 and AB(Vi)'s columns are rows 14 and 13 of the same table. In
the second computation the exogenous variables are pg and x, (the
price of labor and the employment of capital). In going from the first to
the second computation we switched column 14 out of the AB(VI)
matrix into the Ay{V]) matrix and column 18 cut of the AG(Vl] matrix
arid into the A‘(V]) matrix. You might like to use the scltware and data
on the companion diskettes described in Chapter 1 to carry out these
two simulations for yourself and to check the results in Table E3.6.1.

In using a model, it is important to be able to explain the
solutlion matrices in some detail. Convincing applications are possible
only if we can isolate the particular aspects of the model which are
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responsible for particular results. In this exercise, your task is to
explain various aspects of our two solution matrices for the Stylized
Johansen model. Specifically, where 11 .(R.S) denotes the elasticity of
endogenous variable R with respect to exogenous variable S in compu-
tation r (for example, N 1(Y,X3) is 0.6, ng(X;.Pg) is -1.5, etc.), account
for the following relationships which are apparent in Table E3.6.1:

(a) n{P;.V) =0 (E3.6.2)
where V is any exogenous variable and r = 1,2.
® nY.V) =n.(X;0.V), (E3.6.3)
N(Y.V) = n.(X54.V) + 1,(Py,V) (E3.6.4)
where V is any exogenous variable and r = 1,2,
(c) n(P4.X35) < 0. (E3.6.5)
(d) N (V.X3) +n(V.Xy) = 1 (E3.6.6)
where V is any endogenous quantity or income variable, and
N (V.Xg) +1(V.Xy) = 0 (E3.6.7)
where V is any endogenous price variable.
(e) No(V.Xy) = 1 (E3.6.8)
where V is any endogenous quantity or income variable, and
Me(V.Xy) =0 (E3.6.9)
where V is any endogenous price variable.
(f) No(V,Pg) = n;(V.X3)/M1(P3.X3) , (E3.6.10)
No(V.Xy) =11 (V.Xy) - ny(V.X3) 11(P3.X,)/n,(P3.X5) . (E3.6.11)
NylX3,Pg) = 1/1,(P3.X5) , (E3.6.12)
and L (XgX) = - 4Py X, /M, Py Xg) . (E3.6.13)

where V is any variable which is endogenous in both
computations 1 and 2. Can you see any practical application
for relationships such as (E3.6.10) - (E3.6.13)?

(8) N;X31.X3) =1 X30.X3) =1, (E3.6.14)
N1 Xg1.Xg) =N 1(Xy0.X3) =0, (E3.6.15)
N1 Xg1.Xy) =11 (X30.X4) =0, (E3.6.16)
N1Xg1-Xg) =Ky Xy ) =1, (E3.6.17)

MN(P3.X3) +M,(Pg.Xg) =1, (E3.6.18)

d
an nl(P39X4) - nl(P4, X4) = 1 . (E3-6. 19]
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Table E3.6.1

105

Solutions for the Stylized Johansen Model under Alternative Closures

(1) Exogenous factor

(2) Exogenous wages

employment and capital
employment
Variable 14 15 18 15
Number
X3 Xa P3 X4
Elasticity = with respect |employment employment| price of employment
of | to o of labor of capital labor of capital
1 Y Household 0.6 0.4 -1.5 1
expenditure
2 Xjo0 Household 0.6 0.4 -1.5 1
3 X9 demands 0.7 0.3 -1.75 1
4 X, Intermediate 0.6 0.4 -1.5 1
5 X9 and primary 0.7 0.3 -1.75 1
6 Xs3; factor inputs to 1 0 -2.5 1
7 X4 industry 1 0 1 0 1
8 X2 Intermediate 0.6 0.4 -1.5 1
9 X99 and primary 0.7 0.3 -1.75 1
10 X39 factor inputs to 1 0 ~2.5 1
11 X490 industry 2 0 1 0 1
12 X, Commodity 0.6 0.4 -1.5 1
13 X5 supplies 0.7 0.3 -1.75 1
14 X3 Employment N.A. N.A. -2.5 1
15 X4 levels N.A. N.A. N.A. N.A.
16 P; Commodity 0 0 0
17 Py and factor -0.1 0.1 0.25 0
18 Pg prices -0.4 0.4 N.A. N.A.
19 Py 0.6 -0.6 -1.5 0

N.A. (not applicable). The variable indicated in the row is exogenous.

Answer to Exercise 3.6

(a)

(b)

demand equations (E3.2.1).

Recall from (E3.2.6) that the price of good 1 is fixed in all
computations.

Equations (E3.6.3) and (E3.6.4) follow from the household

For interpreting (E3.6.3), it is again

necessary to recall that the price of good 1 is fixed.
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{c) What we must explain is why an increase in the employment of
labor, with the employment of capital held constant, reduces the price
of good 2.

There are two avenues in the Stylized Johansen model for
absorbing extra labor without changing the economy-wide employment
of capital. First, there could be an increase in the labor/capital ratios of
both!0 industries. This would require a reduction in the price of labor
relative to that of capital leading to a reduction in the price of the labor
intensive commodity relative to that of the capital intensive commodity.
A glance at Table E3.3.1 is sufficient to convince us that good 2 is
relatively labor intensive.

The second avenue is to increase the output of the labor
intensive good (good 2) relative to that of the capital intensive good
(good 1). Again this would require a reduction in Py relative to P,
Otherwise, the change in the commodity composition of demands
would not match the change in the composition of supply. Thus, with
P, fixed, P, must fall if extra labor is to be absorbed through either
avenue.

(d) Equations (E3.6.6) — (E3.6.7) imply that a one per cent increase
in the employment of both scarce factors causes all real quantities and
income to increase by one per cent with no changes in any prices. This
reflects an absence of scale effects. In the Stylized Johansen model
there are constant returns to scale in production and unitary income
elasticities in consumption. Therefore, if we increase the employment
of both labor and capital by one per cent, we can arrive at the new
equilibrium without any changes in prices by
(i) increasing household income by one per cent causing
(ii) increases of one per cent in all household commodity demands
which can be satisfied by
(iii) one per cent expansions in all commodity outputs which are
made possible by
(iv) one per cent increases in all inputs (primary and intermediate).

(e) With the closure used in computation 2, capital is the only
scarce factor. Equations (E3.6.8) and (E3.6.9) imply that if the wage
rate is held constant, then a one per cent increase in the employment

10 From (E3.2.2) we find that: x3] —X4] = P4 —~P3 = X39 —X49- Hence, the
labor/capital ratios in the two industries cannot move in opposite

directions.
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of the scarce factor leads to a uniform one per cent expansion in the
real side of the economy with no price changes. This result again
reflects an absence of scale effects. Again we can arrive at the new
equilibrium by a simple sequence. First we increase the employment of
capital by one per cent in each industry without any changes in prices.
Then we must increase all other inputs in both industries by one per
cent — otherwise we would violate the cost minimizing input demand
equations (E3.2.2). This means that we have increases of one per cent
in the outputs of both commodities. Since the use of both commodities
as intermediate inputs has increased by one per cent, we can be sure
that there are one per cent increases in the quantities left over for
household consumption. Finally, we note that the increase in factor
employment has expanded household income by one per cent. Thus we
have an equilibrium because the increase in the availability of
commodities for household consumption is matched by the increase in
household demand.

(f) N, (V,P3) is the percentage change in variable V arising from a
one per cent increase in the wage rate holding constant the
employment of capital. Obviously we can compute n4(V,P5) by adopting
closure 2 and by setting pg = 1 and x4 = 0. Alternatively we could adopt
closure 1. Then the percentage change in variable V is given by

P3 =N1(P3.X3)x5 + 1 (P3.X,)x, . (E3.6.21)

If we now want to compute the effect on V of a one per cent increase in
wages with zero effect on the employment of capital, we can evaluate v
in (E3.6.20) - (E3.6.21) with p5 = 1 and x4, = 0. This gives (E3.6.10).

To obtain (E3.6.11) we first note that ny(V,X,) is the percentage
change in variable V arising from a one per cent increase in the
employment of capital, holding constant the wage rate. Thus, 1n4(V.X,)
may be found by computing v in (E3.6.20) — (E3.6.21) with x4 = 1 and
pg = 0. This gives

v= T'll[V,X4) - n1W.X3)n 1(P3,X4) / Tll(Pg-X3).

establishing (E3.6.11).

Equation (E3.6.12) is derived by using (E3.6.21) to evaluate X3
when ps = 1 and x4 = 0. Finally (E3.6.13) follows if we evaluate X4 in
(E3.6.21) with X4 =1and pg=0.

Relationships such as (E3.6.10) - (E3.6.13) enable us to go from
one closure to another without having to repeat the partitioning and

Also we have
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solving steps described in (3.1.9) - (3.1.11). By applying these
relationships to the results in Table E3.6.1 for closure 1, we can deduce
any of the results for closure 2.

Computations similar to this are often useful in analysing
simulation results. For example, imagine that we are trying to interpret
a set of resuits on the effects of increases in tariffs computed under the
assumption that the real wage rate adjusts to ensure that there is no
change in aggregate employment. We may wish to see how the results
are affected if we adopt the alternative assumption that it is employ-
ment which adjusts rather than the real wage rate. This requires a
change of closure with aggregate employment becoming endogenous
and the real wage rate becoming exogenous. By using relationships
such as (E3.6.10) — (E3.6.13), results for key variables under the new
closure can be computed conveniently with a pocket calculator.

(g) The first step in understanding (E3.6.14) - (E3.6.19} is to
recognize that in the Stylized Johansen model the ratio of the value of
output in industry 1 (Z;) to that in industry 2 (Z,} will never change.
This would be obvicus if there were no intermediate inputs. Then the
values of outputs from industries 1 and 2 would equal the values of
household demands for commodities 1 and 2. Under the Cobb-Douglas
utility function, (E3.1.1), value shares in household expenditure are
constant which would imply that value shares in total production would
be constant also.

With intermediate inputs in the story, the constancy of Z,/Z,
depends on the Cobb-Douglas specification of the production functions
as well as that of the utility function. The Cobb-Douglas production
functions mean that in each industry the share of each input in the total
value of output is constant. Thus, in the Stylized Johansen model
implemented with the data in Table E3.3.1, we know that the value of
commodity 1 used in the production of commodity 1 will always be %Zl
and that value of commodity 1 used in the production of commodity 2
will always be %22. Since the value of household consumption of
commodity 1 will always be one third of total expenditure (Y), we can
write:

1 1 1
Zl = §Zl+ 622+ §Y . (E3622)
Similarly 1 1 9
Zo=3Zy+ 3529 +3Y (E3.6.23)
implying that
pyne Z, %Y and zy=2v . (E3.6.24)
giving

2,/Zy=2/3 . (E3.6.25)
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Now that we have shown that Z,/Z, is constant, it is also clear
that X;,/X;q is constant for i = 1, ....4. Remember that input value
shares in Z, and Z; are constant and that input prices do not vary
across industries. In particular, the employment of labor will always be
allocated between the two industries in the base period proportions,
i.e., 25 per cent to industry 1 and 75 per cent to industry 2. Similarly,
the employment of capital will always be allocated 50 per cent to
industry 1 and 50 per cent to industry 2. Therefore, if there is an x per
cent increase in the aggregate employment of labor, there must be an x
per cent increase in the employment of labor in each industry. If we
put x equal to one, we have explained (E3.6.14) and, if we put it equal
to zero we have explained (E3.6.16). Equations (E3.6.15) and (E3.6.17)
follow in a similar way when we consider x per cent increases in the
aggregate capital stock with x = O and x = 1. Finally, if there is an
increase in the employment of labor of one per cent in each industry
with no change in the employment of capital, then P, /P45 must increase
by one per cent - otherwise there would be changes in the labor and
capital shares in the values of industry output. Consequently we observe
(E3.6.18). Similarly, if the employment of capital increases by one per
cent in each industry with no change in the employment of labor, then
P5/P, must increase by one per cent. This leads to (E3.6.19).

B. ELIMINATING JOHANSEN'S LINEARIZATION ERRORS

Given a vector V which satisfies the structural equations (3.1.1),
the Johansen method allows us to evaluate the derivatives or elasticities
of the endogenous variables with respect to the exogenous variables. By
totally differentiating the system (3.1.1) and applying the matrix
operations described in (3.1.9) - (3.1.11) we obtain a matrix B(V) of
either derivatives or elasticities at the point V. Johansen (1960)
evaluated his B matrix at VI, the vector of prices and quantities revealed
by his base-period input-output data. He then calculated the effects on
the endogenous variables (v} of changes in the exogenous variables (VB)
according to (3.1.11). The well-known weakness of this calculation is
that it fails to allow for changes in the derivative or elasticity matrix,
B(V), as V moves away from v

The first step in overcoming this weakness is to recognize that
we are dealing with a problem treated in detail in texts on numerical
analysis. We have a system of the form

| F(Vg, Vo) = 0

We assume that the system has a solution of the form
Va = GWB)
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where F(VB, G(VB) )]=0

for all Vg in a neighborhood of an initial point, Vé. While we do not
know the form of the G functions, we do know how to evaluate a matrix
B(V]) which has the property that

VG(W) = B(V)

for all V satisfying the structural equations, where VG(VB) is the matrix
of partial derivatives of G and Vp is the exogenous subvector of V. Thus
our problem is the standard one of numerical integration, i.e., given a
starting point v! and a formula for VG(VB] evaluate

AVy = G(VB) - G(VB)
where VF[; and VIB are the final and initial values of the exogenous
variables.

Having recognized the nature of our problem, we are free to
solve it by using one of the numerous methods described in texts on
numerical analysis.!! These methods can be applied in our situation by
multi-step Johansen procedures. In Exermses 3.7 and 3.8 we ask you
to apply the Euler method where the shifts. (V B~ VB] in the exogenous
variables are broken into n equal parts or possibly n equal percentage
parts. Conceptually this is the simplest approach and it has, as was
mentioned in Section 3.1, proved adequate in applications to the
solution of general equilibrium models. Nevertheless, it would be
possible in multi-step Johansen computations to adopt strategies which
normally generate faster convergence to the true solution as we in-
crease the number of steps, e.g. the strategy of Runge and Kutta, (see
Cohen, 1973, Chapter 11).

Exercise 3.7 An introductory example of a multi-step Johansen
computation
In this exercise we return to the system (3.1.2). Assume, as we

did in Section 3.1, that V3 is the exogenous variable and that initial
values for the variables are given by (3.1.4).

(a) Use a two-step Johansen procedure to compute the effects on
V1 and V5 of a 100 per cent increase in V3. Base the
calculations on (3.1.7), i.e., do the calculations using percentage
changes in the variables. In the first step, calculate the effects
on Vy and Vg of moving V3 from 1 to 1.5. Then reevaluate the

11 See for example, Cohen (1973), Dahlquist, Bjorck and Anderson (1974) and
Conte and de Boor (1980).
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elasticities of V; and Vg with respect to V3. In the second step,
use the reevaluated elasticities in caiculating the effects on Vy
and Vg9 of moving V3 from 1.5 to 2.

(b) Use a 4-step Johansen procedure to compute the effects on V;
and Vg of a 100 per cent increase in V3. In the first step,
increase Vg from 1 to 1.25. In the second, increase Vg from
1.25 to 1.50, etc. Continue to work with percentage changes
rather than log changes.

(c) At this stage we have three Johansen-style estimates based on
(3.1.7) of the values of V| and V45 after a 100 per cent increase
in Vg: the one-step estimate (0.5, 1.5) derived in Section 3.1 via
equation (3.1.16) and the 2- and 4-step estimates obtained in
parts {(a) and (b) of this exercise. In Table E3.7.1, we have done
some more arithmetic and added the 8-step estimate. Can you
see a relationship between these four estimates? How could we
extrapolate from the one- and two-step results to obtain
improved estimates of the effects on V; and Vo of a 100 per
cent increase in V4?7 Can you provide an extrapolation using all
four sets of results?

Answer to Exercise 3.7
(a) In this example we have
vl
v |=BV) vy (E3.7.1)
where 2 o 17 r17 [-05
B(V) = - { ] = . (E3.7.2)
Vi/2 Va2 01 [0.5Vy/Vy

We interpret the v;s as percentage changes.
In the first step of the two-step procedure we use

o[ 7]

as our estimate of the percentage effects on V| and V5 of moving Vg
from 1 to 1.5. Thus, at the end of the first step, V has moved from

(1.1.1) to (V)12 = (0.75, 1.25, 1.5)

where we use the notation (V); ¢ to denote the value of V at the end of
the rth step of an s-step procedure.



112 Notes and Problems in Applied General Equilibrium Economics

In the second step of the two-step procedure we use

~16.6
V] _ l B -=
BNV E

as our estimate of the percentage effects on V; and V, of moving V5 from
1.5 to 2. Hence, our final estimate of V in the two-step procedure is

(V)g o = (0.625, 1.375, 2) . (E3.7.3)

On comparing (3.1.4) and (E3.7.3) we conclude that a 100 per cent
increase in Vg induces a 37.5 per cent reduction in V; and a 37.5 per
cent increase in Vi,

(b) Our calculations give

—Vl- ~-12.5

v = } leading to {V}; 4 = (0.875, 1.125, 1.25),
["2]1.4 L 125 '

vy] —10

= leading to (V) = (0.7875, 1.2125, 1.5),
(V224 |77 ] & 2.4

vl_ r 83 7
{v = leading to (V)3 4 = (0.7219, 1.2781, 1.75) ,
2]34 L1L54124 ’
and finally
v ] [-7.1429 .
[v = leading to (V)4 4 = (0.6703, 1.3297, 2).
2/4.4 [4.0342 '

We conclude from the four-step procedure that a 100 per cent increase
in V5 induces a 32.97 per cent reduction in V| and a 32.97 per cent
increase in V.
(c) Let us denote the result for variable i from a procedure with
step size h by V{h). (For example, in Table E3.7.1, Vo(g) = 1.3103). We
make two assumptions. First that
lim Vi) = V] (E3.7.4)
h —Q
where Vrir, i = 1,2, is the true value for variable i after we increase Vg to
2. VF{ and Vg can be derived from (3.1.3) and are shown in the last row
of Table E3.7.1 as 0.7071 and 1.2929. Our second assumption is that
Vj(h) can be expressed as

vith) = ) a,h'.i=12, (E3.7.5)

r=0
over the relevant range for h (in our example [0,1]).
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Table E3.7.1
Solutions for V; and Vg in the System (3.1.2) when V3 is moved
from 1 to 2: Calculations based on (3.1.7) (@

Endogenous Variables Vi Vo

Initial Values 1 1

Estimated values after an increase in Vg from 1 to 2

1 - step computation 0.5 1.5

2 - step computation 0.625 1.375
4 - step computation 0.6703 1.3297
8 - step computation 0.6897 1.3103
1,2 step extrapolation (b) 0.75 1.25
1.2.4 step extrapolation (€} 0.7041 1.2959
1,2,4,8 step extrapolation (@) 0.7073 1.2927
Truth (€ 0.7071 1.2929

(@) The calculations were done in percentage changes with the change in
V3 divided into equal parts. For example, in the first step of the 2-step
calculation, we set 100(dV3)/Va =50 thus moving V3 from 1 to 1.5. In
the second step we set 100(dV3)/V3 = 33.3, moving V3 from 1.5 to 2.

(b) Computed according to (E3.7.9).
(c) Computed according to (E3.7.14).
(d) Computed according to (E3.7.186).
(e) Computed using (3.1.3).

Assumption (E3.7.4) says that by making the step size
sufficiently small, i.e., by taking a sufficient number of steps, we can get
arbitrarily close to the true answer. In other words, our n-step
procedure converges to the true solution as n becomes large. If you
want to read about convergence conditions, look under Euler's method
in an intermediate text on numerical analysis, e.g., Young and Gregory
(1972, pp. 441-449) and Conte and de Boor (1980, pp. 359-362).
Convergence conditions are studied in detail in the specific context of a
Johansen model in Dixon et al. (1982, section 35).

Assumption (E3.7.5) relies on the idea that continuous functions
can be approximated arbitrarily closely by polynomials of sufficiently
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high degree - see Young and Gregory (1972, p. 308).12 Notice that
(E3.7.4) and (E3.7.5) together imply that

Vi =agy 1212 . (E3.7.6)
Now suppose that Vj{(h) can be approximated by
Vi(h) = ag+ah , i=12 . (E3.7.7)

In (E3.7.7) we are assuming that the higher order terms in (E3.7.5) can
be ignored in the relevant range for h. If (E3.7.7) were valid, then we

would have
Vij(h/2) - Vj(h) = —(a“/2)h , i=1,2 . (E3.7.8)

In particular, we would have
Vi(1/2) - Vi(1) = —(a;,/2)
Vi(1/4) - Vi(1/2) = —(3;,/2) (1/2)

Vi(1/8) - Vi(1/4) = ~(a;;/2) (1/4) , i=12 .

Hence we would find that the gaps between the answers from the one-
and two-step procedures would be twice the gaps between the answers
from the two- and four-step procedures. Similarly, the two/four gaps
would be twice the size of the four/eight gaps. On looking at Table

E3.7.1 we see that these relationships are approximately satisfied. For
example, the results for V, give

Vi(1/2) - Vo(l1) = 0.125 = 0.0906 = 2(V(1/4) - V;(1/2)) ,

and

d
V(1/4) - V;(1/2) = 0.0453 ~ 0.0388 = 2(V,(1/8) - V,(1/4))

The importance of approximations such as (E3.7.7) is that they
often allow us to achieve adequate accuracy with multiple-step Johansen
computations even though our computer budget may be sufficient for
only a small number of steps. Assume, for example, that we are able to
make only a one-step computation and a two-step computation. In
terms of our example, we are able to evaluate V;(1) and Vy(1/2) for i =
1,2. Then (E3.7.7) suggests that we should estimate V"Ii‘ by solving for
a;q in the equations Vi(l) = a,g + ay.

12 It might be objected that h takes only the values 1, % 3-1, etc. and is not a
continucus variable. To overcome this problem, we can imagine that if h is
0.4, for example, then our procedure is to increase V5 from 1 to 1.4, then
from 1.4 to 1.8 and finally from 1.8 to 2. If h = 0.7, we move V3 from 1 to 1.7
and then from 1.7 to 2, etc.
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That is, we should estimate V;r by extrapolation from our one- and two-
step solutions according to

vi=avii/2)-vi(1), i=1.2 (E3.7.9)

The results of applying (E3.7.9) are shown in Table E3.7.1 in the row
labelled 1,2 step extrapolation.

If our computer budget is a little less limited so that we can
afford to make one-, two- and four-step computations, then we can
replace (E3.7.9) by a more sophisticated extrapolation equation. First,
we replace (E3.7.7) by the improved approximation

Vi(h) = a5+ a;;h + ah? . (E3.7.10)

Then, assuming that we have computed V;(h), V;(h/2) and V;(h/4), we
solve for a,; in the system of equations

Vi(h) = a;5 + a;,h + a,,h? | (E3.7.11)
Vi(h/2) = a;g + (a;;/2)h + (a5/4h> | (E3.7.12)
Vi(h/4) = a;g + (a;;/4)h + (a;5/16)h* | (E3.7.13)

The solution for a;3 can be obtained by first multiplying (E3.7.11) by -1,
(E3.7.12) by 6, (E3.7.13) by -8 and then adding the resulting equations.

This gives
~Vi(h) + 6V;(h/2) - 8Vj(h/4) = -3a,,

leading to the extrapolation equation
vl = (8/3) Viih/4) - 2Vi(h/2) + (1/3)Vi(h) . (E3.7.14)
Application of (E3.7.14) in our example with h = 1 gives the results
shown in Table E3.7.1 in the row labelled 1,2,4 step extrapolation.
When Vj(h), V;(h/2), Vi(h/4) and V;(h/8) are available, we can
improve the approximation (E3.7.7) to
Vi(h) = a5 + (a;)h + ajoh? + a;3h? . (E3.7.15)
Then following a strategy similar to that which lead to (E3.7.9) and
(E3.7.14) we can derive the extrapolation equation

V’gz (64/21)Vi(h/8) - (56/21)Vi(h/4) + (14/21)Vi(h/2) —(1/21)Vj(h).
(E3.7.16)

Application of (E3.7.16) in Table E3.7.1 gives the results in the row
labelled 1,2,4,8 step extrapolation.

Readers who are familiar with the numerical-methods literature
will recognize equations (E3.7.9), (E3.7.14) and (E3.7.16) as examples
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of Richardson's extrapolation.!3 Extrapolation techniques can usefully
supplement any computational procedure where the aim is to evaluate
F{h) in the limit as h approaches zero by computing a sequence F(h,},
F(hy),... for hy > h, > ... > 0. Dahlquist, Bjorck and Anderson (1974, p.
270}, in referring to an extrapolation procedure, comment that: “This
process is, in many numerical problems — especially the treatment of
integral and differential equations — the simplest way to get results
which have negligible truncation error”.

Exercise 3.8 A multi-step computation for the Stylized Johansen
model

Figure E3.8.1 is a flow diagram for a multi-step solution of a
Johansen model. To start the computations (box 1), we must read in
the input-output data (Table E3.3.1 for our Stylized model). Normally,
we would also read in various substitution parameters. In the Stylized
model, this is not necessary. Under the Cobb-Douglas specifications in
this model, all the substitution elasticities are unity, and need not
appear explicitly in our computations. Other data which can be
supplied at the initial stage of the computations are the closure (i.e., the
choice of exogenous variables), the shocks (i.e., the changes in the
exogenous variables) and the number of steps to be used (denoted by s).
Finally, we set a counter, r, which will keep track of how many steps
have been completed.

The arithmetic starts in box 2 with an evaluation of either an A
matrix or a condensed version of one. Condensing is not necessary in
the Stylized model. We will work with the system (E3.2.1) - (E3.2.6).
With our counter, r, at zero, the A matrix is evaluated using the initial
input-output data. We denote this initial A matrix by A(Mo,s] where
(V)r's is the vector of values attained by the variables at the end of r
steps of an s-step procedure. (V) . which has previously been denoted
as VI, reflects the prices and quantities implied by the initial input-
output data. For our Stylized model, A((V), ;) was derived in Exercise
3.4 and is displayed in Table E3.4.2.

On reaching box 3 with r = 0, we compute the shocks to be
made to the exogenous variables in the first step of the computation,
i.e., we evaluate the vector (VB)LS. Many sensible schemes are available
for dividing the total change in each exogenous variable into s parts.
For example, in Exercise 3.7(a) where s was 2, we broke the total
change (from 1 to 2) in the exogenous variable (which was V3] into a

13  See especially Dahlquist, Bjorck and Anderson (1974, pp. 269-273}.
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pair of equal parts. Our first step was to compute the effects of moving
Vg4 from 1 to 1.5. In the second step we moved Vg from 1.5 to 2.
Because we interpreted the v;s as percentage changes, the total change
in the V4 was implemented as (vg) 1,2 = 50 followed by (v3)2'2 = 33.3 .

Alternatively we could have broken the changes in the
exogenous variable into equal percentage parts i.e.,
(vg)p 9 = (N2 - 1)100 = 41.4213  forr = 1,2, (E3.8.1)

Another possibility was to interpret the v;s as log changes. and to break
the change in V4 into equal logarithmic parts, i.e.,

(Vg)ro = 312} - In(1)] = 0.34657 forr=12. (E3.8.2)

We suspect that the choice between schemes such as equal changes and
equal percentage or log changes is not often an important one.

Box 4 of Figure E3.8.1 is where the shifts in the endogenous
variables at each step are computed. First, the A matrix is partitioned
into A, consisting of the columns corresponding to the endogenous
variables, and A, consisting of the columns corresponding to the
exogenous variabPes. Then the system of equations

A(x((v)r.s)(va]rﬂ,s + A[i((v)r.s)(vﬁ)rﬂ.s =0 (E3.8.3)

is solved for (v
given by

r+1.s This can be done by computing B((V) r,s) which is

B((V)r.s) == [Aa(mr,s) ] - AB((V)r.s) ’

and then post multiplying by (Vﬁ)r +1,s- [n evaluating B matrices,
computational costs can be kept low by avoiding the inversion of A,. If
B is a matrix of elasticities, the jtb column, (B.;), can be computed by
considering the effects on the endogenous variables of a one per cent
increase in the jth exogenous variable holding constant all other
exogenous variables. If B is a matrix of derivatives, then we can
consider the effects of a unit increase in the jth exogenous variable.
Thus, in either case, we can compute B.; by applying efficient

methods!4 to the solution of the system !

14 In the context of Johansen models, these include Jacobi, Gauss-Seidel and

other sparse matrix methods (see, for example, Tewarson, 1973) which take
advantage of the fact that usually only a small fraction (less than 10 per
cent) of the components of Ay are non-zero.
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i.
Set the initial conditions:

(i) Read in the input-output data
and parameter estimates.

(ii) Decide the exogenous/endogenous
split.

(iii) Set the exogenous shocks.

(iv) Set the number of steps, s.

(v) Set the counterr atr =0,

2.
. Evaluate the coefficients of the linearized

system, i.e., compute A((V), ).

;

Compute (v )ys1s -

 J

4.
Compute (Vg)rs1.s = B((Vrs ) Vplrel.s

r+l<s r+l=s
7.
Increaser by 1. r=0,1, ..., s-1 to form the
s-step estimates of the

changes in the endogeneous

variables.
6. J
Re-evaluate the input-output 8.
flows, i.e., transform each Print the results as
(Flow); | s into a (Flow) s. required and exit.

Figure E3.8.1 Flow diagram for a multi-step sclution of a Johansen model
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where [AB)'j is the jth column of Az. In our Stylized model where there
are only 2 exogenous variables, B matrices can be evaluated by solving
just two systems of linear equations of the form (E3.8.4).15 B((V)g ¢
matrices for two alternative closures of the Stylized model are displayed
in Table E3.6.1.

With the completion of the work in box 4, we have come to the
end of the (r+1)th step of our computation. Assuming that r+1 is less
than s, we move to box 5. There we increase r by 1 and we commence
the next step.

Our first task (box 6) in the new step is to update the input-
output data taking account of changes in prices and quantities occurring
in the previous step. For example, if we are just commencing the
second step (r=1), then we will be concerned with how each input-
output flow has been changed from its initial value, (Flow)g 4. by the
changes in prices and quantities in the first step. If our computations
are being done in percentage changes, then when we reach box 6 with
r = p, we can compute the updated flows according to

(Flow), ¢ = (Flow),_; (1 + 0.01p, J(1 + 0.01x, ) . (E3.8.5)

where Pp.s and X, s AT€ the percentage changes in the pth step in the
relevant price and quantity. We can also use this formula when the
computations are done in changes in the variables. However, we need
an extra set of computations to get from results for changes in prices
and quantities to the percentage changes required in (E3.8.5). If the
computations are done in log changes, then a convenient updating

formula is

(Flow)p,S = exp[in(Flow) (E3.8.6)

o—1,s * Pp.s + Xp s}
where Pp.s and X g are log changes computed in step p.

Once the input-output data have been updated, we return to box
2. There, the A matrix is reevaluated using cost and sales shares
computed from the updated input-output flows. Thus, at each step, the
coefficients in the A matrix incorporate the effects on cost and sales
shares of changes in prices and quantities taking place at previous
steps.

The computations continue until eventually we pass through box
4 with r+1 = s. At this stage we have completed s steps. We can now

15 In large models we never evaluate the whole of B. By working with
condensed systems we can limit our computations to selected rows. By
applying {(E3.8.4} for a subset of js we can limit our computations to selected
columns.
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compute the s-step estimates of the values reached by the endogenous
variables given the total shocks in the exogenous variables. The relevant
formulae for endogenous variable k are

(Vids.s = Mdos + 2 My s (E.3.8.7)
when the vis are changes, p=1
S
Mdss = Mdos TT (1+ 0.01(vyl, s ) (E.3.8.8)
p=1

when the vy s are percentage changes, and
s

(Vids.s = @0 | (Vidg s + 22 ), (E.3.8.9)

p=1
when the vis are log changes. Rather than reporting the levels (Vi )g .
it is normally of more interest to report the percentage effects on the
endogenous variables of the changes in the exogenous variables. The s-
step estimates of these percentage effects can be computed as

100((Vids.s - Mdo.s)/ Mdos -

(a) Use a sequence of calculations of the type outlined in Figure
E3.8.1 to provide a two-step solution for the Stylized Johansen
model. Assume that the initial situation is that depicted in
Table E3.3.1. Assume that the exogenous variables are P5 and
Xy4- Compute the effects of a 50 per cent increase (from 1 to
1.5) in the wage rate, P3, holding constant the capital stock, X,.

Hint: You will need only a pocket calculator if you work with log
changes and use the information in Table E3.6.1. So that you
can compare each stage of your calculations with ours, we
suggest that you 1mplement the 50 per cent increase in Pgj as
two increases of 21n(1 5) in In(Pg), i.e, put (p3]1 9 = (p3)2 9 =
2ln(l 5).

(b) What is the true solution for the effects on the endogenous
variables of a 50 per cent increase in P3? Can you write down
the solution functions? That is, can you express Y, X, X9, €tc.
as functions of Pg and X,?
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Answer to Exercise 3.8

(a) Following the procedure outlined in Figure E3.8.1, we start by
setting r at zero. The first arithmetic operation (box 2) is the evaluation
of A((V)O,s]- This has been done in Exercise 3.4 and the answer is
displayed in Table E3.4.2. Moving on to box 3, we accept the hint and
set

(VB)I,Z = = =
X4 0
1,2
Most of the computation in box 4 was completed in Exercise 3.6 where
B((V)o o) was computed for the relevant closure (Pg, X, exogenous) and
displayed in the right panel of Table E3.6.1. The vector (v,); 5 can be

evaluated simply by multiplying the Pg-column of Table E3.6.1 by
0.20273. This gives

P3 5ln(1.5) [0.20273

] . (E.3.8.10)
0

Voli2 = 0 X0+ Xo0: X171+ X21. X371
X410 X12+ X22- X32: X42- X»
X9 X3, Py P2: Pal1 2
= (-0.30410, -0.30410, -0.35478, -0.30410, -0.35478, -0.50683,
0, -0.30410, -0.35478, -0.50683, 0, -0.30410,
-0.35478, -0.50683, 0, 0.05068, -0.30410).

Since s = 2 and r+1 is currently at 1, we move to box 5. There, r is
increased to 2 taking us through to box 6. In box 6 we reevaluate the
initial input-output flows from Table E3.3.1 according to formula
(E3.8.6). Thus, for example, we have

(Flow 1 to 1)1‘2 = explin(Flow 1 to 1)0’2 + (P1)1.2 + (x11)1,2]
= explin(4) + O - 0.30410} = 2.9511.
The complete set of updated flows is in Table E3.8.1.

It is apparent that in generating Table E3.8.1, we have deflated
each flow in Table E3.3.1 by the same percentage. Thus, in this
particular example, when we return to box 2, we find that A((V) 1,2) is
the same as the initial A matrix displayed in Table E3.4.2. This is
because the elements of A are either ratios of flows (cost and sales
shares} or constants. In box 3, we set p 3 and x, at the same values as
they had in previous step, i.e., 0.20273 and 0. Since we arrive at box 4
with the same A matrix and vg vector as in previous step, we emerge

with the same Voo that is a
(Valz 2 = Vo) 2
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Table E3.8.1
Input-Output Data after 1 Update; (Flow i to j); 2 in Dollars

Industry Households || Total Sales

1 2

Commodity 1 1.4756

2 4.4267

Primary Factors 3 22134

4|l 0.7378 0.7378

Production —l 5.9022 8.8534 4.4267

With r+1 at 2, we move to box 7. The two-step estimates of the
values of the endogenous variables after a 50 per cent increase in P4 can
now be computed using (E3.8.9). For the first variable, household
expenditure, we obtain

Yoo = explin(lYpol+y) o+ysol
= exp[ln(6) - 0.30410 - 0.30410] = 3.2660.

Thus, our two-step estimate is that a 50 per cent increase in pg will
reduce household expenditure by 45.57 per cent. Similarly we find that
there are reductions of 45.57 per cent in X4, X;y. X 9. X;, and Py4.
There are reductions of 50.81 per cent in X5, X5, X595, and X,. For
X351. X35 and X4 the reductions are 63.71 per cent. P, increases by
10.67 per cent and there are no changes in X,,, X,9 and P;.

(b) Apart from rounding errors, the two-step solution obtained in
part (a) is the true solution. One way of checking this is by substitution
back into the structural form (E3.1.9), (E3.1.10), (E3.1.12), (E3.1.6),
(E3.1.7) and (E3.1.23). For example, consider the household demand
equations (E3.1.9). With i = 1, we have

In this particular example, substitution back into the structural
equations may not be the cleverest way of establishing that the two-step
solution is free from linearization error. Nevertheless, it is illustrative
of the method that is available in most models for checking the validity

and



Chapter 3: The Johansen Approach 123

Table E3.8.2
Input-Output Data after 2 Updates; (Flow i to j)2 o in Dollars *
Industry Households || Total Sales
1 2
Commodity 1t 2.1773 1.0887 1.0887 4.3546
1.0887 3.2660 2.1773 6.5320
Primary Factors 3| 0.5443 1.6330 2.1773
1.0887
Production 4.3546 6.5320 3.2660

*These flows can be computed using (E3.8.6) with p=s = 2.

of a suggested solution. In a few very large models, it may be too cum-
bersome to substitute into the left and right hand sides of every
structural equation. In such cases, a useful minimum check is provided
by the post-solution input-output table, i.e., the table of flows implied by
the suggested solution. To obtain this table, we can make an extra
update of the input-output flows by carrying out the computations in box
6 of Figure E3.8.1 with r = s. (The post-solution input-output flows for
the computations in part (a) are given in Table E3.8.2.) Violations of
the row and column sum balancing conditions in the post-solution
input-output table would imply that the suggested solution is
inconsistent with the structural equations requiring that for each
industry the value of inputs equals the value of output and for each
commodity the value of output equals the value of sales.

Normally, substitution of an s-step solution into the structural
equations would produce discrepancies between left and right hand
sides beyond what could be explained by rounding errors. We would
also expect there to be differences between the ith row and ith column
sums of the post-solution input-output table. We would be satisfied with
the s-step solution if we judged the various discrepancies to be suffi-
ciently small. In our Stylized model, however, we find that multi-step
solutions computed with log changes produce no non-rounding discrep-
ancies. This indicates that the solution equations are log linear. They

are, in fact,

-1.5 -1.5 -1.5
Y = C1X4P3 ,Xlo = C2X4p3 3 sesy P4= C17P3 »
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where the exponents on the right hand sides have been taken from the
right panel of Table E3.6.1 and the C;s are constants whose values can
be determined from the initial data in Table E3.3.1. For example, C, is
6/2.

C. ON DERIVING PERCENTAGE-CHANGE FORMS

The problems in this section provide practice in deriving
percentage- or log-changel6 forms for demand and supply systems
associated with a variety of production and utility functions and
production possibilities frontiers. By the time you finish these
problems, we hope that you will feel confident about deriving
percentage-change forms for any of the specifications you are likely to
want to use in practice.

Exercise 3.9 Linearizing the input demand functions from a CES
production function!”

Assume that a firm facing given input prices, Py, ..., Py, chooses
input levels, Xy, ..., X|;, so they minimize the cost, ZiPiXi' of producing a
given output, Y, subject to the CES (constant elasticity of substitution)

production function
n -1/p
Y=A] ) 8XP (E3.9.1)
i=1

where A and the §;s are positive parameters with Ziﬁi =landpis a
parameter whose value is greater than or equal to -1 but not equal to
zero.18

Derive the percentage-change form for the input demand

functions. Avoid corner solutions by assuming that p > -1.

16  Percentage-change and log-change forms are identical. For expositional
simplicity we refer in the remainder of this section to percentage changes
only.

17 The CES production function was first applied by Arrow, Chenery, Minhas
and Solow (1961). For an exercise which develops the properties of the CES
production function in detail, see Dixon, Bowles and Kendrick (1980,
Exercise 4.20).

18  As p approaches zero, {(E3.9.1} approaches a Cobb-Douglas form, see Dixon,
Bowles and Kendrick (1980, E4.20).
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Answer to Exercise 3.9

The first-order conditions for cost minimization are that there
exists A such that A and the X s jointly satisfy

n -(1+p)/p
P = AA[ X 8.XP 5% ) k=1,...n (E3.9.2)
i=1
and n -1/p
Y=A| Y 8XP . (E3.9.3)
i=1

By using (E3.9.3). we can replace (E3.9.2) with the more convenient
equations  p _ A APyl1+p) g, x, 140 k=1, .. n. (E3.9.4)

In percentage change form (E3.9.4) and (E3.9.3) can be written as

Pk = A + (1+4p)y - (1+p)x (E3.9.5)
and
y= stkxk (E3.9.6)
where py, A, y and x; are percentage changes in Py, A, Y and X, .. and
Sy =8 Xy P / (E3XP) forall k. (E3.9.7)
Equation (E3.9.4) implies that
PpXy / LPX =8 X P/ L3X P . (E3.9.8)

Thus, S is the share of input k in total costs.
From (E3.9.5) we find that

X = -Opyg + OA +y (E3.9.9)
where ¢ is the positive parameter defined by
o=1/(1+p) . (E3.9.10)
Substitution from (E3.9.9) into (E3.9.6) gives
y = -6X, Skpg + ok +y
leading to - ZkSkpk . (E3.9.11)

Now we substitute from (E3.9.11} into (E3.9.9) to obtain the percentage
change form for the input demand functions:
n

X =y - G(pk - E Sipi) fork=1, .. n (E3.9.12)
i=1
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Equation (E3.9.12) says that in the absence of price changes, all
input volumes move by the same percentage as output. This reflects the
constancy of the returns to scale exhibited by the production function
(E3.9.1). If the price of input k rises relative to a cost-share weighted
index of all input prices, then the use of input k will fall relative to
output (i.e., X, /Y will decline). There will be substitution away from
input k. The strength of this substitution effect depends on the size of
the parameter o, which is the elasticity of substitution between any pair
of inputs.

It is worth noting that in our derivation of the percentage
change form, (E3.9.12), we worked with a percentage change version of
the first-order conditions (E3.9.2) and (E3.9.3). This approach is
usually easier than the alternative where the input demand functions
are first derived and then linearized.

Exercise 3.10 Linearizing the input demand functions from a CRESH
production function!®

Assume that the production function has the CRESH (constant

ratios of elasticities of substitution, homothetic) form, i.e.,
n

Z[thi % = « (E3.10.1)

Y hj

i=1

where Y is output, the X;s are inputs and the Q;s, h;s and « are param-
eters. Each h; is less than 1 but not equal to zero. Each Q, is positive
and the Q;s and a are normalized so that )y i9i = 1. In general, a can
have either sign but if each of the Q,/h; has the same sign, then a must
have their common sign. As in Exercise 3.9, derive a percentage-change
form for the input demand functions assuming that the firm treats input
prices, P, k = 1, ..., n, as beyond its control and chooses its input levels
to minimize the cost of producing any given level of output.

Answer to Exercise 3.10

The first-order conditions for cost minimization are that there
exists A such that A and the X ;s jointly satisfy

k=1

Kk
P, = A . k=1,..n (E3.10.2)
k [th } Ak

19 CRESH functions were introduced by Hanoch (1971). For an exercise which
develops the properties of the CRESH production function in detail, see
Dixon, Bowles and Kendrick (1980, Exercise 4.21).
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and n h Q
2 [ﬁ} P . a (E3.10.3)
Y h;
i=1
In percentage change form (E3.10.2} and (E3.10.3} can be written as
pk = ;\f + (hk—l)xk - hky, k = 1, cany n (EB. 10.4)
n
and
D hylxy)W, = 0 (E3.10.5)

i=1
where py, A, y and x,. are percentage changes in Py, A, Y and X, and

e

Y;| hy

1

Wi=

i=1,....n (E3.10.6)

By multiplying (E3.10.2} through by X, we can show that
n

h W, / X, hW,

i=1
where S, is the share of input k in total costs. Hence, (E3.10.5) may be
rewritten as

Sk' k= 1. [P §

n
D Six = Y- (E3.10.7)
k=1
Next, we rearrange (E3.10.4) as
1
X, = [}ﬁ} (By - A + hyy). (E3.10.8)
Then by substitution into (E3.10.7) we find that
S
k
Hence, *
A=y + 20 S Py (E3.10.10)
where Sy is the modified cost share defined by
« S /(1-hy)
5 =K (E3.10.11)

2.8,/(1-hy
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Now we substitute from (E3.10.10) into (E3.10.8) to obtain the
percentage-change form for the input demand functions as

X =V - oglpg - 2.S;py) . k=1,...n (E3.10.12)
where o is the positive parameter defined by
o = 1/(1-hy). (E3.10.13)

Equation (E3.10.12) differs from (E3.9.12), which we derived
for the CES case, in two respects. First, the weights used in computing
the average movement in the input prices are ‘modified’ cost shares
rather than cost shares. Second, (E3.10.12} generalizes (E3.9.12) by
allowing the coefficient, o}, on the relative price term to vary across
inputs.

Exercise 3.11 Supply response functions with CET and CRETH

transformation frontiers?0
Assume that a firm facing given prices, P, ..., P, for its m
products chooses its output levels, Yy, ..., Y. to maximize total revenue,

2.P.Y;, subject to the CET (constant elasticity of transformation)
production possibilities frontier

-1/p

m
-p
Z=B ZYiYi (E3.11.1)
i=1

where B and the y's are positive parameters with z Y= 1and p is a
parameter whose value is less than or equal to -1.21  Z is a measure of
the firm’s overall capacity to produce or activity level. The value of Z
depends on the quantities of inputs. In the present problem, where we
are determining the composition of the firm's output, we will treat Z as
an exogenous variable.

20 CET functions were first applied by Powell and Gruen (1967 and 1968).
CRETH functions were first applied by Vincent, Dixon and Powell (1980).
CRETH functions are used in modeling the agricultural sector in the ORANI
model of the Australian economy, see Dixon, Parmenter, Sutton and
Vincent (1982, pp. 68-94 and 191-194).

21  The CET form is identical to the CES form apart from the restriction on p.
With CES, p is greater than or equal to -1; with CET, p is less than or equal to
—-1. In the CES case, the contours are concave from above. In the CET case,
the contours are concave from below.
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(a)  Sketch the production possibilities frontier assuming that m = 2,
Y1 = Yo= 1/2,B=1,Z=1 and p = -2.

(b) What happens to the production possibilities frontier as Z
changes?

(c) Assumethatm=2,y,=v9=1/2,B=1andZ=1. Describe how
the shape of the production possibilities frontier changes as p
moves from -1 towards negative infinity.

(d) In this problem we are assuming that the product composition
of the firm's output can be determined independently of the
composition of the firm's inputs. Describe the circumstances
under which such an assumption would be appropriate.

(e) Derive percentage-change forms for the firm’'s supply response

functions; i.e., relate the percentage changes, y,, k=1, ..., m, in
output levels to the percentage change, z, in total capacity or
activity and the percentage changes, p,, k = 1, ..., m, in the

product prices. To avoid corner solutions, assume that p < -1.

(f) Replace the CET function (E3.11.1) by the more general CRETH
(constant ratios of elasticities of transformation, homothetic)

function, m
Z[Yi}i\i-ﬁ (E3.11.2)
Z hi - 3 . .
i=1

where the Vis, h;s and B are parameters. Each h; is greater than
1, while  and each of the V;s is positive with Z,V, = 1.22 Derive
a percentage-change form for the supply response functions.

Answer to Exercise 3.11

(a) With the parameters set at the given values, we have
2=Y"+Ys. (E3.11.3)

Assuming that only nonnegative values are allowed for the Y;s, the
production possibilities frontier is the quarter circle, ATB, shown in
Figure E3.11.1.

(b) Changes in Z produce radial expansions and contractions of the
production possibilities frontier. If we increase input levels sufficiently

22 The CRETH form is identical to the CRESH form (see Exercise 3.10) apart
from the restrictions on the his.
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Figure E3.11.1 The quarter circle production possibilities frontier

ATB is the production possibilities frontier for the special case of
(E3.11.1) wherem =2,y = y9=05, B=1,Z=1andp=-2. ATB' is the
production possibilities frontier after Z has been increased by 10 per cent.

to increase Z by, for example, 10 per cent, then we can increase the
output of each commodity by 10 per cent. All points on the new
production possibilities frontier can be obtained by drawing rays (e.g.,
OT in Figure E3.11.1) from the origin to the initial production possi-
bilities frontier and then extending their lengths by 10 per cent (to T').

(c) With the given parameter values, the production possibilities
frontier, (E3.11.1), is
1., _ 1, 5=
Z=[5Y, P+ 5Y, P L/P (E3.11.4)
Its slope is given by23
P vy (E3.11.5)
Slope = - =Y /Yy) " " . E3.11.
P 9Z/3Y 5 1/ 12

23  When the axes are labeled as in Figure E3.11.1, the slope of the production
possibilities frontier is (apart from sign) the marginal rate of
transformation of good 1 into good 2, i.e., the rate of increase in the output
of good 2 made possible per unit reduction in the output of good 1.
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Figure E3.11.2 Production possibilities frontiers given by (E3.11.4) when
p=-1,-2and -

RMS is the production possibilities frontier given by (E3.11.4) when p = -1.
As p approaches negative infinity, the production possibilities frontier
approaches LMN. The quarter circle AMB is reproduced from Figure
E3.11.1 for the case p = -2.

If p=-1, then (E3.11.4) reduces to
1

Z=2

Y, + %Yz

and the production possibilities frontier is a straight line. In this case,
goods 1 and 2 are perfectly transformable. If p approaches negative
infinity, then at points where Y,/Y, is less than one, (E3.11.5) implies
that the slope of the production possibilities frontier approaches zero.
At points where Y,;/Y, is greater than one, the slope approaches
negative infinity. Thus, with Z = 1, the production possibility frontier
moves closer and closer to LMN in Figure E3.11.2 as p approaches
negative infinity. In the extreme case, goods 1 and 2 will be produced
in fixed proportions and revenue maximizing production will be at point
M irrespective of commodity prices.

(d) The assumption is appropriate only if the inputs are of a

general-purpose nature. For example, in modeling the agricultural pro-
duction of a particular region, we could assume that the use of labor,
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farm machinery, fertilizer and land gives the region a capacity (measured
by Z} to produce. We might describe the creation of this capacity by

Z={(L, K, F, N)

where f is a concave function?4 (perhaps of the CES or CRESH variety
studied in Exercises 3.9 and 3.10) and L, K, F and N are inputs of labor,
capital, fertilizer and land. Because these inputs are of a general-
purpose nature, we might assume that the capacity to produce can be
used to generate a variety of combinations of, say, wheat and wool, with
the possible combinations being described by (E3.11.1) or some other
convex function.25 On the other hand, if silo space (wheat-specific) and
shearing (wool-specific) were included among our inputs, then we
could not separate the determination of the input-mix from that of the
output-mix. The input and output mixes would need to be considered

simultaneously.
(e) The first-order conditions for revenue maximization are that
there exists A such that A and the Yy s jointly satisfy
m -{1+p)/p
Py =AB| 2 y¥ | %Y P, k=1...m (E3.11.6)
i=1
and m -1/p
Z=B| D, yYP . (E3.11.7)
i=1

24  fis a concave function on the convex set S c R" if and only if
flox + (1-a)y] = afix) + {1-a)f(y) for all x e [0,1] and x,yeS

(see Katzner (1970, p. 183)). The usual single-output production functions
exhibiting constant or diminishing returns to scale and having isoquants
of the familiar shape are concave on the positive orthant.

25 fis a convex function on the convex set Sc R if and only if
flox + (1-o)y] < oflx) + (1-o)fly) forall o e [0.1] and x,y €S

(see Katzner (1970, p.183)). Production possibilities functions exhibiting
constant or diminishing returns to scale with production possibilities
frontiers of the usual shape are convex on the positive orthant. Note that a
production possibilities function exhibits diminishing returns to scale if a
1 per cent (say) increase in the output of all commodities requires a greater
than one per cent increase in capacity (Z in this exercise). By contrast, a
production function exhibits diminishing returns to scale if a 1 per cent
increase in all inputs produces less than a one per cent increase in capacity.
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By repeating the steps that took us from (E3.9.2} and (E3.9.3) to
(E3.9.12), we can go from (E3.11.6) and (E3.11.7) to the percentage-

change form
Ve=2z-0(p) - Z4Rp) . k=1,..m, (E3.11.8)

where 0 is the negative26 parameter defined by 6 = 1/(1+p) and the
Rs are revenue shares defined by Ry, = P.Y)/ ZiPiYi, for all k.

The interpretation of (E3.11.8) is similar to that of (E3.9.12). In
the absence of price changes, all output volumes move by the same
percentage as overall capacity. This reflects the constancy of the
returns to scale exhibited by the production possibilities function
(E3.11.1). If the price of product k rises relative to a revenue-share
weighted index of all product prices, then the output of k will rise
relative to productive capacity (i.e., Y} /Z will increase). There will be
be transformation towards product k. The strength of this
transformation effect depends on the size of the parameter 6 which is
the elasticity of transformation between any pair of outputs.

(§3) By following the method used in Exercise 3.10, we find that

»*

Yi =2 - 8y (py - ZiRipi] , k=1, ..., m, (E3.11.9)

where 0 is the negative parameter defined by 6, = 1/(1-hy) and the
R’s are modified revenue shares defined by

« Ry /(l1-hy)
Rk _ k k
2. R/(1-h))

with the Rs being revenue shares.

Equation (E3.11.9) differs from the corresponding equation,
(E3.11.8), for the CET case in the same ways as (E3.10.12) differs from
(E3.9.12). First, the weights used in computing the average movement
in output prices are ‘modified’ revenue shares rather than revenue
shares. Second, (E3.11.9) generalizes (E3.11.8) by allowing the
coefficient, 6,, on the relative price term to vary across outputs.

Exercise 3.12 The translog unit cost_function

The transcendental logarithmic or translog function is a
convenient specification for unit cost functions and indirect utility
functions. It underlies much of the econometric work by Dale

26  Remember that p < -1.
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Jorgenson and others27? on systems of sectoral input demand equations
and household consumption equations. Of particular importance to the
further development of applied general equilibrium economics as an
empirical field is Jorgenson’s (1984) paper “Econometric methods for
applied general equilibriurn modeling” in which nested translog unit
cost and indirect utility functions are estimated at a disaggregated level
with U.S. data. In this exercise, we ask you to review the properties of
the translog unit cost function.28

The translog unit cost function has the form
1
InQP) = A+ ZiBilnPi t 5 Eizjcij(lnpi](lnpj] . (E3.12.1)

where Q(P) is the cost per unit of output?? when the input prices are P’
= (P, Py, ..., Pn]30 and A, B; and Cij are parameters with Cij = Cji for all
i #j_Bl
(a)  What restrictions should the B;s and Cijs satisfy to ensure that Q
is homogeneous of degree one with respect to input prices?

(b) Assuming that (E3.12.1) is a legitimate description of the
relationship between unit costs and input prices, derive a
percentage-change form for the input demand functions
convenient for use in a Johansen model.

27  Early applications of translog functions include Berndt and Jorgenson
(1973), and Berndt and Wood (1975). See also Hudson and Jorgenson (1974)
where translog unit cost functions form part of a general equilibrium model
of U.S. energy usage. Recent work is reported in Jorgenson (1984).

28 For an exercise on the properties of cost functions in general, see Dixon,
Bowles and Kendrick (1980, Exercise 4.17).

29 We assume that the underlying production function exhibits constant
returns to scale. Otherwise, unit costs would not be independent of the
output level. See Exercise 3.1(e).

30 We assume that all prices are greater than zero. The RHS of (E3.12.1) is not
defined unless P > 0.

31  Let C be the n x n matrix of C;s. If C were not symmetric, then we could
simply rewrite (E3.12.1) wit'l'x our jnitial C matrix replaced by the
symmetric matrix %(C+C’). Therefore, no loss of generality is incurred by
assuming that we have chosen a symmetric C matrix.
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(¢) In estimating the parameters of (E3.12.1) we can use the fact
that cost functions are concave with respect to input prices.32
What parameter restrictions are suggested by concavity?

Hint: Part (c} is rather difficult. We have provided a detailed answer
which we hope will help you in reading Jorgenson (1984).

Answer to Exercise 3.12
(a) We require that
Q(AP) = AQ(P) for all P> 0 and A > 0. (E3.12.2)

Equivalently, we require that
InQ(AP) = InQ(P) + InA.  forallP >0 and A > 0. (E3.12.3)
From (E3.12.1) we have
INQAP) = A+ X Byin(AP) + -;—Eizj ¢y ([P p)[m(xp ). (£3.12.4)
Since In(APy) = Ink + InP, for all k and Ci_1 = Cji for all i #j,
(E3.12.4) may be expanded as

(NQAP) = InQ(P) + InMX By + IAE, (InPY X Cy + %(mm):i):jcu.

(E3.12.5)
Hence, necessary and sufficient conditions for (E3.12.3) are
ZiBi =1 (E3.12.6)
and
Z]Cq =0 foralli (E3.12.7)

(b) We rewrite (E3.12.1) as
QP = exp(A + Z,ByInP; + 5%, Cy(lnP)(InP)) . (E3.12.8)

From Shepard’'s lemma (see for example, Dixon, Bowles and Kendrick
(1980, Exercise 4.17)), we know that the input demands are the
derivatives

v 28P)

Py

where Y is the level of output and X, is the demand for input k. Thus,
from (E3.12.8), we have

Xy = YQP) (B + Zjij(lnPj)) /P, foralk (E3.12.10)

Xy = for all k, (E3.12.9)

32 If you have forgotten why cost functions are concave with respect to input
prices, then you should look at Dixon, Bowles and Kendrick (1980, Exercise
4.17).
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In percentage-change form (E3.12.10) becomes
Cki

Z )
Xp = Y+ q+ Lty
} | By + L Cy (InPy)

Pj — Pk for all k, (E3.12.11)

where, as usual, the lower case symbols, x, y, q and p represent
percentage changes in the variables denoted by the corresponding
upper case symbols. To turn (E3.12.11) into the required input
demand functions we must eliminate q. We start by noting that

9g(P) Pk
q = Zk [—a;;m} Pk - (E3.12.12)

It follows easily from Shepard’s lemma, (E3.12.9), that the elasticities
of the unit cost function are the input shares in total costs, i.e.,

aQ(P) Pk
oPy Q(P)

where S, = P, X, / (YQ(P]). Hence (E3.12.12) may be rewritten as

= Sy for all k, (E3.12.13)

q =2, SkP - (E3.12.14)

We also note from (E3.12.10) that in the case of translog unit cost
functions, the cost shares are given by

Sy = By + chkj(lnPj) for all k. (E3.12.15)

On substituting from (E3.12.14) and (E3.12.15) into (E3.12.11) we
obtain
X =y - (pk - EjSkij] for all k, (E3.12.16)

where the Sy s are modified cost shares33 defined by
Skj = SJ + (ij / Sy) for all k and j.

Equation (E3.12.16) sets out the system of input demand
equations in a form convenient for use in a Johansen meodel. It
expresses percentage changes in the input demands as linear functions
of percentage changes in the input prices and output. The coefficients
are easily calculated modified cost shares. As in (E3.9.12) and
(E3.10.12), the percentage change in the demand for input k is the
difference between an activity term and a substitution term. In the

33 . L= 2aS, . . =
Note that Z_]Sk_] ZJSJ + EJ(CkJ / Sy) = 1 for all k.
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absence of changes in relative prices, the volume of each input
increases by the same percentage as output reflecting constant returns
to scale in the underlying production function. There will be
substitution away from input k if the price of input k rises relative to a
weighted average of the percentage changes in all input prices. Unlike
the weights appearing in (E3.9.12) and (E3.10.12), the weights in
(E3.12.16) need not all be positive. The translog unit cost function
allows for complementarity between inputs. If Cy. is sufficiently
negative, then S,; will be negative and an increase in l; (with all other
prices and output held constant) will reduce the demand for input k.

(e) There are two ways to interpret the translog unit cost function,
(E3.12.1). One is to think of it as a second-order Taylor's-series
approximation to the true unit cost function. On this interpretation,
Q(P) need exhibit concavity only in the neighborhood of a central price
vector, P, possibly a vector of sample means. The second interpretation
is that Q(P) is, itself, the true unit cost function. On this interpretation,
the parameters of (E3.12.1) should be restricted to ensure concavity, if
not globally, then at least over a large subset of the price space.

Consider, first, the Taylor’s-series interpretation. Where T'(P) is
the true unit cost function, it may be written as

in(r(P)) = in[I(exp(InP ). ..., expinP))]  (E3.12.17)
or in(T(P)) = gnP,, InP,. ..., InP_) . (E3.12.18)

with g being defined by (E3.12.17) and (E3.12.18). It is convenient to
choose quantity units so that the central prices are all unity, giving34

InP = 0.
Then, (E3.12.18) can be expanded as

(0) 92g(0)
in(re) = g0 + 2. [afnp} N [ g ]lnPi P,

olnp; alnP

+ higher order terms.
Hence, under the Taylor's-series interpretation of (E3.12.1), we have
_9g(0)
e alnP; '

i=1,...n (E3.12.19)

34 We use the short-hand notation InP to denote the vector (lnPl, lnPZ,
InP_}.
n
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and 32g(0)
Cp=r =2 "— ij=1,..,n E3.12.20
Y7 Sinp; atnp, * " ( )

That is, the B;s and Cijs in (E3.12.1) are first- and second-order partial
derivatives of the g function evaluated at a central point, InP = 0. Notice

also that dglinP)  atn(r(p)) or(p) P
= = (E3.12.21)
JlnP; alnP; dP; T'(P)
and that by Shepard’'s lemma
or(P)/oP; = X;/Y (E3.12.22)

where X, is the demand for input i and Y is the level of output. Thus,
we see from (E3.12.19) that B, is the share of input i in total costs when

P=P ie., B, = —iii / (F(l_:‘)Y) _ (E3.12.23)

Since T'(P) is concave, we know that its Hessian, H(P), (the
matrix of second-order partial derivatives), must be negative
semidefinite (see, for example, Katzner (1970, pp. 200-201).35 In
particular, H(P) is negative semidefinite. Our task is to translate this
condition on H(P) into a condition on the parameters of (E3.12.1).
First, we must express H(P) in terms of partial derivatives of g(InP).
Then we will be able to use (E3.12.19) and (E3.12.20) in translating the
restriction on H(P) into restrictions on Cij and B;.

Starting from (E3.12.21) we have
ar(P) T(P) og(inP)

9P, P, JnP, (E3.12.24)
Thus the ijth entry in the Hessian matrix, H(P), is given by
32T (P) _ P11 dg . T(P) og I‘(P)[ g }
oP P, oP; Piatnp; U op? ainP P;P; [olnP; olnP
fori,j=1, ..., n, (E3.12.25)
where 6, = O for i #j and §;; = 1. On substituting from (E3.12.19),

(E3.12.26) and (E3.12.21) into (E3.12.25) and recalling that P; = 1 for

all i, we obtain : B A
H(P) = I(P)(C+ BB - B), (E3.12.26)

A
where C is the n x n matrix of Cs, B is the n x 1 vector of B;s and Bis
the diagonal matrix formed from B.

35 Nothing more follows from concavity. Negative semidefiniteness of H{(P) is
sufficient for concavity as well as necessary.
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We assume that r(P is strictly positive. Hence, (E3.12.26])
implies t}lat H(P) will be negative semidefinite if and only if
C + BB’ - B is negative semidefinite. Thus, in summary, the Taylor's-
series interpretation of (E3.12.1) suggests that the B;s can be set equal
to cost shares observed at a central point where all prices are unity and
that C should be estimated as a symmetric matrix subject to the

restrictions that Cl=0 (E3.12.27)36

and A
C + BB'- B is negative semidefinite. (E3.12.28)

Now consider the second interpretation of (E3.12.1). Under
this interpretation, the true unit cost function is

Q(P) = exp[A + X BylnP, + %ZiZjCij[lnPi)(lnPj)] . (E3.12.29)

Thus we have, as we did in part (b},

0Q(P)  Q(P)
dP; P;

Notice that dQ(P)/dP; cannot be nonnegative for ail P > O unless Cij =0
for all i and j. Obviously we would not wish to restrict the C;s to zero.
If we did so, we would be back to the Cobb-Douglas situation of fixed
cost shares. If we had been happy with a Cobh-Douglas specification, we
would not be worrying about translog functions. Thus, in using the
translog function, we cannot insist on global monotonicity, i.e., we
cannot insist that 9Q(P)

oP;

(B; + chij InPy) . (E3.12.30)

> 0 for all P > O, i=1, .., n.

36 In (E3.12.27) we have simply repeated restriction (E3.12.7) derived in part
(a). However, the derivation in part (a) was based on the assumption that
Q(P) is the true unit cost function, not just a second-order approximation.
In the present context, we know that I'(P} is homogeneous of degree 1 with
respect to prices. Therefore I';(P) is homogeneous of degree zero where we use
the subscript i to denote partial differentiation with respect to P;. Hence,
from Euler’s theorem, we have erij [P]PJ. -0 forall i,

where Fij[P) is the second-order partial derivative of ['(P} with respect to P,
and P. By substituting from (E3.12.25) and by recalling that the linear
homogeneity of I'(P) implies that YT (PP =TI(P)

1] i~ ’

we find that 22 (InP)
_o7glink) .
1 atnpatnp, ~ O OrAlt

In particular, this condition holds at P = P justifying (E3.12.27).
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Consequently, we cannot interpret (E3.12.29) as a globally valid
description of unit costs.

In his econometric estimation of the parameters of translog unit
cost functions, Jorgenson (1984) interpreted (E3.12.29) as the true
unit cost function for all P > 0 such that monotonicity is satisfied. In
addition to the usual symmetry and homogeneity restrictions,

C=C, (E3.12.31)

2B =1, (E3.12.32)

and c1=0, (E3.12.33)
he imposed the restriction

C is negative semidefinite. (E3.12.34)

This ensures that the Hessian matrix of Q(P), HQ(P], is negative
semidefinite for all P in the set

{PIP >0, aQ(P)-O,i:l,...,n} . (E3.12.35)
oP;
This, in turn, ensures that Q(P) is concave over any convex set in L.37

To demonstrate the negative semidefiniteness of H,(P) under
(E3.12.31) - (E3.12.34), we start by differentiating in (E3.12.30) with
respect to Pj to obtain the components of I—IQ(P) as

9 Q(P) -
E)Pian = P P_] [Si(P)Sj(P) - 8;;54(P) + CIJ] for alli, j (E3.12.36)
where & = 1 ifi:jand6 =0ifi+#j, and
aQ(P) P .
S;(P) = ap, Qe i=1, ... n (E3.12.37)
(E3.12.36) can be rewritten as
A A A
Ho(P) = Q(P) P71 (C + S(P)S(P) - S(PY)P~!,  (E3.12.38)

where P is the diagonal matrix of P;s, S(P) is the column vector of S;(P)s
and S(P) is the diagonal matrix formed by S(P). In view of (E3.12. 30)
(E3.12.33}, we know that

37 Apart from the case in which n = 2, (E3.12.31) - {(E3.12.34) are not sufficient
to ensure that L is convex.
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25 = XB; + ZiEjCijlnPj = 1.

Thus, for all P eL 0<SP)<1,i=1,...,n It follows that for all P e L,
S(P)S(P) - S(P) is negatwe semldeflmte 38 Hence, if C is negative
semidefinite, then HQ(P) is negative semidefinite for all P € L.

At this stage it may be objected that (E3.12.34) is overly
restrictive. Perhaps the negative semidefiniteness of HQ(P) forallPe L
could be guaranteed under a weaker prior restriction. However, this is
not the case. Assume, for example, that we are able to find P*e¢ L so
that

S,(P*) = By + L,CyinP

L e
| 1 fori=i

11

0 fori#i*
Then, we would have A
S(P*)S(P*)" - S(P*) =0

and HQ(P*) would not be negative semidefinite if C were not negative
semidefinite.

Nevertheless, it is clear that Jorgenson’'s concavity condition
(E3.12.34) is more restricting on the parameter estimates than the
corresponding condition, (E3.12.28), derived under the Taylor’'s-series
interpretation of (E3.12.1). Jorgenson emphasizes the importance of
his concavity condition in influencing his parameter estimates. It would
be of interest, therefore, to repeat his work using condition (E3.12.28j)
in place of (E3.12.34).

A
38 Let Z(x) = X'(SS’' - S) x where S > 0 and 1'S=1. We can write Z(x) as

EIZJXIXJSIS -2, x

= Zlfj#ixixSS+ ZxS ExS
= I ZuxixSiS; + LSi(S; - x°

1
2
21 fj#lxlxjs Z Z #IS]SJXI

Z; S8y (xyx; -
E ZSS (xlxJ X; )

Z{x)

2
1
-5 LI5S -5 < o
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Exercise 3.13 Linearizing the demand functions _for separable
production and utility functions

Nearly all applied general equilibrium models use separable
production functions and utility functions. Separability assumptions
reduce the number of parameters requiring explicit evaluation. They
also lead to simplifications in the representation of systems of demand
equations. In this exercise, we give you various separable specifications
for production and utility functions and ask you to derive demand
equations in forms suitable for use in Johansen-style models.

We start with a definition of separability. A function f(Xa, XB' vens)
is separable3? with respect to the partition Nj. ..., N if it can be
written in the form

Xy Xp, ) = Vg X, gox@), ., g x),  (E3.13.1)

where N, ..., N are a non-overlapping coverage of the set {a, B, .
and xU) 1s the subvector of (X, Xg. -- ..) formed by the components Xy for
which n e N, L

An example of a separable production function is the widely
used specification

where Y is output: X fori=1, .., n s=1, 2, is the input of good i
from source s with s = 1 referring to domestic products and s = 2
referring to imports; X, ¢ for s = 1.2 is the input of primary factor of
type s with s = 1 indicating labor and s = 2 indicating capital; and the
notation CES(X(j}). X(jg)) means that X(;}) and X(;5) are to be combined
according to a CES function (see (E3.9.1)). In this example, the V of
(E3.13.1) is a Leontief function and the g;s are each CES functions of
two inputs. Under (E3.13.2), output is viewed as a Leontief combination
of effective inputs where effective inputs are CES combinations of
domestic and imported materials40 and of labor and capital. The
underlying assumptions are that there is no substitution between
different materials and between materials and primary factors.
However, substitution can take place between domestic and imported
materials of the same commodity classification and between labor and
capital.

39 The definition given here is for what is often called “weak separability”
(see, for example, Katzner (1970, p. 28])).

40 This treatment of imports in general equilibrium modeling was pioneered
by Armington (1969 and 1970).
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Assume that the production function has the form (E3.13.2).
Assuming cost minimizing behavior, derive the percentage-
change form for the input demand functions.

Assume that the production function has the form
Y = CD{CES(X{; 1) X(19): -+ CESXK {11 1) X(ns1.2)h

where CD denotes Cobb-Douglas function. Again derive the
percentage-change form for the input demand functions.

Letting Q be the number of households, assume that the
consumption bundle, X, /Q. k= 1,..., n, of effective inputs for the
average household is chosen to maximize the strictly
quasiconcave utility function

UX,/7Q. X,/Q. ... X,,/Q) (E3.13.3)
subject to
Xy = CES(Xy 1) Xko) - k=1....n (E3.13.4)
and n 2
2 2 PuoXis = M. (E3.13.5)
k=1 s=1

where M is the aggregate household budget, and X, and Piis)
are the quantity consumed and price of good i from source s,
with s = 1 referring to domestic sources and s = 2 referring to
imports. Show that the percentage-change form of the system
of household demand equations may be written as

2

Xks) = Xk~ Gk(p(ks) - z S[kt)p(kt)) k=1, ..,ns=1,2,
t=1
(E3.13.6)
with n
xk -q = Ek(m - Q) + Z lelpl, k= 1. I § (E313.7)
i=1
and 2

pk = Z S(kS)p(kS]‘ k=1, .. n, (E3138)

s=1
where S(ks] is the share of the household sector’s expenditure
on good k which is devoted to good k from sourte s, o is the
elasticity of substitution between the alternative types of good k,
and the g, s and the n ;s are expenditure and own- and cross-
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price elasticities satisfying the restrictions flowing from utility
maximization, namely4!

n
Zekak = 1, (Engel’s aggregation) (E3.13.9)
k=1

n
Z Nk = —€x- K=1,....n, (homogeneity) (E3.13.10j
i=1

and

oMy + €0 ) = oy My + gy, 1 # Kk, (symmetry) (E3.13.11)

where oy is the share of the household sector’'s budget devoted
to good k from both sources.

Answer to Exercise 3.13

(a) Total costs, C, are given by
n+l 2
C= 2 2 PigXgs (E3.13.12)
i=l1  s=1

where P, is the cost of input i of type s. With the production function
(£3.13.2), cost minimization requires that we put42

Y = CES(X()) Xxo)) forallk=1,..,n+l. (E3.13.13)

Thus, to minimize (E3.13.12} subject to (E3.13.2), we must for each k

choose X(kl) and X(kz) to minimzize

Y Py Xks) (E3.13.14)

s=1
subject to (E3.13.13). This later problem was studied in Exercise 3.9.
By adapting (E3.9.12) to the notation of the present problem, we find
that the percentage change form for the input demand system is

41 For exercises on (E3.13.9) - (E3.13.11), see Dixon, Bowles and Kendrick
(1980, Exercises 2.1, 2.2, 2.6 and 2.7).

42 If (E3.13.13) were not satisfied, we could cut costs while holding output
constant by reducing the use of inputs k for which
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2

X(kS) =y - Gk(p(kS} - 2 S(kt)p(kt))’ k = 1, vey n+1, S = 1,2,
t=1 (E3.13.15)

where the lower case symbols, x(y). ¥ and p(g). are percentage changes
in variables denoted by the corresponding upper case symbols, o is the
elasticity of substitution between the alternative types of input k and
S(ks) is the share of input k of type s in the total cost of input kK, i.e,

Sies) = PlsiX(ks) 7/ 2ePretX(it)

(b)  Let Xy = CES(X(x)) Xxo)) (E3.13.16)

ie., let X} denote the effective level of input k. If we are to minimize
costs, then we must spend as little as possible on Xik1) and X(k2) subject
to achieving the optimal level for X,. Thus, Xy, and X(k2) will
minimize 9

2 PaoXiks) (E3.13.17)
s=1

subject to (E3.13.16) with Xk set at its optimal level. It follows that
movements in X o, Pg). s = 1,2 and Xy will be related by

2

X(kS) = Xk - O’k (p[kS] - Z S(kt) p(kt)) ) k= 1, veesy n+]., S = 1,2,

t=1 (E3.13.18)
where the notation is familiar from part (a).

To determine the x; s we can consider the problem of choosing

X1 Xy, ooes Xy, to minimize el
D PXy (E3.13.19)
k=1
subject to Y= CD(X ) E
= 10 Xnel) o (E3.13.20)

where P, is the minimum cost per unit of effective input k. From
(E3.13.19) - (E3.13.20), we find that
1

n+
Xk = ¥V - (Pk- Z Otipi), k=1, .. n+l1, (E3.13.21)
i=1
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where «; is the share of input i of both types in total costs. Next we
note that Py is given by 2

P =( 2. Puestixs) ) / Xic - (E3.13.22)
s=1
where X(kl) and X(k2] minimize (E3.13.17) subject to (E3.13.16). From
(E3.13.22) we obtain

Pk = Z S(ks)(p(ks) * x[ks)) - Xk - (E3.13.23)
s=1
On applying (E3.13.18) we find that
2
s=1

Finally, we combine (E3.13.18), (E3.13.21) and (E3.13.24) to
generate the percentage-change form for the input demand system as
2

Xks) = ¥V~ OklPks) - Zs(kt)p(kt))

t=1
2 n+l 2
- ( L SuqPu - & 2 %y Py )
t=1 i=1 t=1
k=1, ..,n+l,s=1,2, {(E3.13.25)

where o is the share of input i from source s in total costs, i.e. @ (ig) =
aiS(iS).

On the right hand side of (E3.13.25) we have two substitution
terms, a within-group term and a between-group term. The first
substitution term implies that if the price of input k of type s rises
relative to the general price of input k, then the demand for input k of
type s will fall relative to the overall demand for input k. The
percentage change in the general price of input k is a cost-share
weighted average of the percentage changes in P(kl) and P(kz)- The
second substitution term shows that if the general price of input k rises
relative to a cost-share weighted index of all input prices, then there
will be substitution away from both types of input k towards effective
inputs of other materials or primary factors.
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(e) If we are to maximize utility subject to budget constraint, then
we must spend as little as possible in achieving whatever are the
optimal levels for effective inputs. Hence, X ;) and X9, will minimize

2
2 PicsXics) (E3.13.26)
s=1

subject to

Xy = CES(X (1) Xg)) (E3.13.27)

As we have noted earlier in this exercise, problem (E3.13.26) -
(E3.13.27) leads to percentage-change equations of the form (E3.13.6).

To determine the effective input levels, we consider the
problem of choosing X, X,, ..., X}, to maximize

UX, /9. X,/Q, ... X,,/Q) (E3.13.28)
n
subject to
k=1

where Py is the minimum cost per unit of effective input k. We know
from (E3.13.24) in part (b) that percentage movements in Py are
described by (E3.13.8). Thus, all that remains is to establish (E3.13.7).

We can rewrite problem (E3.13.28) - (E3.13.29) as follows:
choose X’;, X:l to maximize

UX, - X0) (E3.13.30)
n
subject to . .
2EX =M, (E3.13.31)
k=1

where XI( = X;./Q and PI( = P, Q. From (E3.13.30) - {E3.13.31) we have
n

X = gm + Xngp. k=1..n  (E3.13.32)
i=1

where the n;;s and €, s satisfy the restrictions, (E3.13.9) - (E3.13.11),

flowing from the utility maximizing model with «,; interpreted as

ag = PIX /M = PX /M forallk.
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Since x;{ =X —q and p;( = pg + 9. (E3.13.32) implies that
n
Xx -9 = §gm + ani(pi +q) . (E3.13.33)

i=1
In view of (E3.13.10), (E3.13.33) can be rearranged as (E3.13.7).

The interpretation of the system (E3.13.6) - (E3.13.8) is
straightforward. In (E3.13.6) we see that the demand for good k of type
s moves with the demand for effective units of good k. However, if the
price of good k of type s increases relative to the overall price of good
k, then there will be substitution away from good k of type s towards
the alternative source of good k. Movements in the overall price of
good k are defined by (E3.13.8). Equation (E3.13.7) explains the
movements in the demand per household for effective units of good k in
terms of the movement in the budget per household and movements in
the overall prices of all goods. The g, appearing in this equation is the
expenditure elasticity for effective units of good k while the n;s are
own- and cross- price elasticities for effective units of good k with
respect to the overall prices, P, ..., P,. Since the g, s and n;s satisfy
the conditions flowing from utility maximization, in assigning values for
them we are free to draw from the extensive literature on the systems
approach to applied demand theory (see Powell (1974), Phlips (1974)
and Deaton and Muellbauer (1980)).



