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Chapter 2

THEORY OF THE CONSUMER: INTRODUCTION

2.1. Goals, reading guide and references

The theory of consumer demand is a basic building block for many economic
studies. It plays a particularly important role in welfare economics, international
trade theory, general equilibrium theory and the theory of public finance. In
addition, the techniques required in consumer demand analysis are readily ap-
plicable to other parts of economic theory. You will find, for example, that the
theory of production is very similar from a mathematical point of view to the
theory of consumption.

The objective of this chapter is to introduce you to some of the main ideas of
consumer theory and to give you a chance to practise the relevant techniques of
analysis. We hope that by the time you have completed the readings and prob-
lems that you will have reached the following goals:

(1) a thorough understanding of the procedure for deriving demand func-
tions from the model of consumer maximization of utility subject to a budget
constraint;

(2) an ability to discuss clearly the meaning of the uniqueness of a utility
function up to a monotonic transformation;

(3) an ability to establish the triad, i.e. the Engel aggregation, the homo-
geneity restriction, and the symmetry restriction;

(4) an understanding of the Hicks—Slutsky partition and an ability to prove
that the own-price substitution effect is negative;

(5) an understanding of how preference orderings could be constructed
using observed market behavior (revealed preference);

(6) a familiarity with the basic ideas of the pure theory of exchange, in-
cluding some of the geometric tools used in general equilibrium analysis, e.g.
offer curves, contract curves, and the Edgeworth box;

(7) an understanding of how consumer theory is used to provide restrictions
on parameter values in the estimation of a complete system of commodity
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demand functions. In particular, you should be familiar with the restrictions

which flow from the adoption of an additive utility function.

Reading Guide 2 provides a suggested path through the readings to cover
these concepts. Sections 2.2—2.4 are some short notes stating some of the prin-
cipal definitions and theoretical results encountered in the problem set. Readings
and references are given in abbreviated terms in the reading guide and in the rest

of the chapter; full citations are in

Reading Guide*

Begin

'

the reference list.

that you would like a warm-up

consumer theory is all about

Innocent of economic theory or been
away from it for a long enough time

exercise in order to remember what

Yes

No

Read Baumol, ch. 9

\

Look through Henderson and Quandt (H-Q), secs 2.1-2.8.
Does all this material look easy and very familiar?

No

Study H-Q, secs 2

.1-2.8 carefully

No Iconfused?l
e

Yes

|

Study Baumol, ch.

9, or Hicks, pp. 11-52

Read Pearce, pp. 14

-43, for a discussion of

(1) the basic axioms of consumer choice,
the restrictions on the utility function, and
(3) the problems introduced by the temporal
dimension of consumer choice. This reading
could be supplemented by Intriligator, pp.
142-148 or Phlips, pp. 1-11

(2)

[

Yes
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;

An important use of consumer theory is in the
estimation of systems of demand equations. Here,

the theory often allows the econometrician to place
sufficient restrictions on parameter values to ren-
der estimation possible in the presence of data
limitations. Read Powell (1974, chs. 1 and 2) and/or
Theil (1967, pp. 182-200), or Theil (1975, pp. 1-30),
or Phlips, pp. 32-66. Phlips contains some interesting
problems which you might like to attempt.

This reading will be rather difficult for many of you.
However, most of the main results of classical consumer
theory and the recent work on the underlying theory

for the estimation of consistent sets of demand equations
are covered in the above references. If you can persevere,
the reward is substantial.

/

Like to see an application of the
additivity restrictions in the
estimation of a complete set of
demand equations

Yes

No

Read Powell (1966, pp. 661-675)

Want to obtain an impression of how complete
systems of demand equations are used in
economy-wide planning models

Yes

Skim Taylor and Black. Try to
No identify their treatment of
consumer demand

Read Pearce, pp. 64-72, and/or
Little, pp. 283-289, and/or
Intriligator, pp. 163-166, on
the revealed preference approach

Running ahead of schedule and Read Lancaster's (1966) refor-

want to familiarize yourself Yes mation of consumer theory in

with an alternative approach > terms of consumption activities

to the above material rather than consumption goods
and services
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No

Still have a little extra Read Musgrave, pp. 232-245, and
time and want to see appli- Yes Becker
cations of consumer theory

to time as a commodity?

No

1

The theory of consumer behavior is the basis for the theory
of pure exchange - the first building block in a general
equilibrium system. Read Vickrey, pp. 96-101, to refresh
your memory on the theory of exchange. The offer curves dis-
cussed there are the same as the price-consumption curves

in Baumol, p. 193. If you have more time to devote to this
topic, try Intriligator, ch. 10

Plan to specialize to some Read Houthakker (1961) and
extent in economic theory Yes Brown and Deaton. What were
in subsequent study? the main developments and

changes in emphasis in demand
theory which took place between
the two surveys?

No

Review the list of goals given in this section.
Be sure that you reach them by the time you
finish your reading and problems

Exit

* For full citations, see reference list in this section.



Theory of the consumer: introduction 69
References for Chapter 2

Baumol, W.J. (1972) Economic Theory and Operations Analysis, 3rd edn., Prentice-Hall.

Becker, Gary S. (1965) ‘A Theory of the Allocation of Time’, Economic Journal, 74,
September, 493-517.

Brown, J.A.C. and A. Deaton (1972) ‘Surveys in Applied Economics: Models of Consumer
Behavior’, Economic Journal, 82, 1145—1236.

Ferguson, C.E. and S.M. Maurice (1974) Economic Analysis, revised edn., Richard D. Irwin,
Inc.

Henderson, J.M. and R.E. Quandt (1971) Microeconomic Theory, second edn., McGraw-
Hill.

Hicks, J.R. (1962) Value and Capital, 2nd edn., Oxford.

Hilton, P.J. (1960) Partial Derivatives, Routledge & Kegan Paul Ltd. and Dover Publications
Inc. '

Hirshleifer, J. (1976) Price Theory and Applications, Prentice-Hall.

Houthakker, H.S. (1957) ‘An International Comparison of Household Expenditure Patterns,
commemorating the Centenary of Engel’s Law’, Econometrica,25,532-551.

Houthakker, H.S. (1961) ‘The Present State of Consumption Theory’, Econometrica, 29(4),
704-740.

Intriligator, M.D. (1971) Mathematical Optimization and Economic Theory, Prentice-Hall.

Lancaster, K. (1966) ‘A New Approach to Consumer Theory’, Journal of Political Econo-
my, 74, April, 132—157.

Lancaster, K. (1968) Mathematical Economics, Macmillan.

Little, .LM.D. (1958) A Critique of Welfare Economics, 2nd edn., Oxford.

Musgrave, R.A. (1959) The Theory of Public Finance: A Study in Public Economy,
McGraw-Hill.

Pearce, I.F. (1964) A Contribution to Demand Analysis, Oxford.

Phlips, L. (1974) Applied Consumption Analysis, North-Holland/American Elsevier.

Powell, A.A. (1966) ‘A Complete System of Consumer Demand Equations for the Aus-
tralian Economy Fitted by a Model of Additive Preferences’, Econometrica, 34,
661-675.

Powell, A.A. (1974) Empirical Analytics of Demand Systems, Lexington Books, D.C. Heath.

Taylor, L. and S.L. Black (1974) ‘Practical General Equilibrium Estimation of Resource
Pulls under Trade Liberalization’, Journal of International Economics, 4(1), 35-58.

Theil, H. (1967) Economics and Information Theory, Rand McNally.

Theil, H. (1975) Theory and Measurement of Consumer Demand, vol. 1, North-Holland/
American Elsevier.

Vickrey, W.S. (1964) Microstatics, Harcourt.

2.2. Notes on utility maximizing

Much theoretical and applied economics starts with the hypothesis that house-
hold preferences over alternative consumption bundles can be represented by a
utility function. That is, we assume that a continuous function U can be defined
so that

Ux)>U@)
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if land only if the household prefers commodity bundle x to commodity bundle
).

There is no requirement, of course, that Ube unique. In fact, if a household’s
preferences are representable by any function, then they are representable by
many functions. If U is a valid utility function, then so is kU, where k is any
positive number. In general, if f is a monotonically increasing? function, then
f(U) will provide a valid representation of the household’s preferences. Notice
that

fU) > f(U())
if and only if

Ux) > U(),
ie.

fUX) > f(UO))

if and only if the household prefers x to y.

On the other hand, not all sets of household preferences can be accommodated
by a utility function. For example, if a household prefers x to y and y to z, but
it also prefers z to x, then a utility function representation is ruled out. Because
x is preferred to y, we require that U has the property that

Ux)>U(y). (2.2.1)
Similarly, we require that

U) > U(z) (2.2.2)
and

U(z) > U(x). (2.2.3)

Clearly, it is impossible to define a function U which satisfies (2.2.1)—(2.2.3).
Hence, by adopting a utility function representation, we are assuming that

' x and y are non-negative n-vectors whose components represent the household con-

sumption levels for each commodity. We assume that U is defined for all x > 0, x € R".
Hence, we assume that commodities are divisible, i.e. any non-negative vector can be con-
sumed.

2 fis a monotonically increasing function if and only if

f@) > f(b)

wherever

a>b.
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household preferences are transitive, i.e. if the household prefers commodity
bundle x to y and y to z, then the household will prefer x to z.

While transitivity is the most obvious restriction imposed by the utility func-
tion representation, there are others. If you want to know what these are, we
suggest that you check either Phlips (1974, pp. 1-8) or Intriligator (1971, pp.
142—145). Both these readings give straightforward and complete statements of
the conditions under which a set of preferences can be represented by a utility
function. Our own view is that if we are happy to assume that preferences are
transitive, then we should also be happy to accept the assumption that prefer-
ences are representable by a utility function. You will find when you read Phlips
and Intriligator, that the assumptions (beyond transitivity) required to ensure
the existence of a utility function have little practical significance.?

It we accept that it is reasonable to represent household preferences by a
utility function, then the natural next step is to assume that households behave
as if they choose their purchases of goods and services to maximize the utility
derivable from their total budgets. We assume that the representative household
chooses x = 0 to maximize

U(x) (224)
subject to
P'x <y,

where x is an n-vector whose components are the amounts of each commodity
purchased, p is the vector of commodity prices, y is the total household budget,
and U is the household’s utility function.

Many of you will have some familiarity with model (2.2.4), at least in its
two-commodity form.* Where n = 2, we can illustrate the household utility-
maximizing problem as in fig. 2.2.1. aa, 8 and yy are contours (usually called
indifference curves) of the utility function. A'B is the budget line defining the
household’s feasible set of purchases and X is the problem solution, i.e. the
commodity bundle which maximizes utility subject to the budget constraint.
You will recall that the purpose of diagrams such as fig. 2.2.1 is to facilitate the
discussion of how households are likely to react to changes in prices, p, and
income, y.*> Such changes generate shifts in the position of the budget line and
many exercises in elementary courses are concerned with tracing out the implica-

We return to this idea in Chapter 3, especially E3.4.
Standard textbook treatments include Ferguson and Maurice (1974, chs. 3 and 4),
Baumol (1972, ch. 9) and Hirshleifer (1976, chs. 3 and 4).

Sy might be more appropriately referred to as the household’s level of expenditure. In
this book we follow conventional practice and call y ‘income’.

4
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Y

A/

Figure 2.2.1

A B

Figure 2.2.2. The increase in the price of good 1 shifts the budget line from A'B to
A'A. Household consumption moves from x to x.
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tions for household consumption. For example, fig. 2.2.2 illustrates the impact
on household purchases of goods 1 and 2 of an increase in p,, with p, and y
held constant. (Can you remember how to separate out the income and substi-
tution effects? If not, look at Intriligator (1971, p. 161).) More generally, model
(2.2.4) provides a theoretical structure for investigations of systems of house-
hold demand equations.

2.3. Systems of demand equations

On the basis of (2.2.4) we can write the system of household demand equations
as

xi =gi(pl:p2 a'":pn;y)’ i= 1,---,’1; (2.31)

where g,(p1,....0,,; ¥) denotes the solution for x; in problem (2.2.4) when prices
and income are at the levels p,,...,p, and y. It is usual to assume that the g; are
functions, i.e. for each value of p and y the solution for (2.2.4) is unique. It is
also usual to assume that the g; are continuous. (Figs. 2.3.1 and 2.3.2 show
counter-cases.) Both uniqueness and continuity are assured if the utility function
is strictly quasiconcave (see E1.13). In this chapter we will not attempt a rigorous
justification of the strict quasiconcavity assumption. We simply ask you to rely

X2
Indifference map
Py
Demand curve
for good 1
0 A B Cc X, 0} A B C X4

Figure 2.3.1. «o, g8 and vy are indifference curves exhibiting the ‘wrong’ curvature. When
the budget line is 4'A4, household consumption is completely specialized in good 2. (The
solution to the consumer problem is atA’.) As we lower the price of good 1 (holding p, and
y constant) consumption stays at 4 ' until the budget line reaches 4 'B. At this stage the con-
sumer is indifferent between points A’ and B. As p, falls further, the consumer specializes
in good 1. The resulting demand curve (illustrated on the right) exhibits a discontinuity at
the price—income combination implied by budget line 4 'B.
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Pi Demand curve
for good 1
Indifference map
A B C x X4 §1 X

Figure 2.3.2. Again aa, 88 and vy are indifference curves. This time, the indifference curve
BB has a linear segment. With the particular price—income combination implied by the budget
line A'B, the household is indifferent over the range of consumption bundles from X to X,
i.e. the consumption bundle is not uniquely determined. The demand curve for good 1 is
illustrated on the right.

on the traditional story of diminishing marginal rates of substitution (see, for
example, Ferguson and Maurice (1974, pp. 74—79), Hirshleifer (1976, pp.
68—69) and Baumol (1972, ch. 9)). In chapter 3 (see E3.4) we will be more
ambitious. We will argue that if observable household behavior is consistent with
any utility-maximizing model, then it is consistent with one in which the utility
function is strictly quasiconcave. In other words, there is no set of data which
would support the utility-maximizing model but at the same time allow us to
reject the assumption that the utility function is strictly quasiconcave. Thus, if
we are prepared to assume utility maximizing, then there is no reason to be shy
about the additional assumption that the utility function is strictly quasicon-
cave.

A final assumption to be noted here is that the g; are differentiable. This
assumption does not really need to be justified independently of the continuity
assumption. If the g; are continuous, then there can be no harm in assuming
them to be differentiable. If the ‘truth’ is that the g; are continuous but not
differentiable, then the truth can be approximated to any degree of precision by
a model in which the g; are assumed to be differentiable. The differentiability
assumption is convenient because it allows us to define elasticities. We describe
the responsiveness of the demand for good i to changes in the price of good j by

_% P

€. = , forall i and j, (2.3.2)
ij
ap,- &i
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where e, is called the elasticity of demand for good i with respect to price j. If i
=], then e;; is an ‘own’ price elasticity. Otherwise it is a ‘cross’ price elasticity. e;;
gives the percentage rate of change in the demand for good i per percentage
increase in p; with all other prices and the expenditure level held constant.
Similarly, we describe the responsiveness of demand to changes in income by
income elasticities (£)):

ag;

E=— 2 i=1.n (23.3)

G

The focus of most applied work in demand systems is on the measurement of

the elasticities e;; and E.®

2.4. The implications of utility maximizing for demand systems

Most of the material in this chapter concentrates on the relationship between the
model (2.2.4) and the system of demand equations (2.3.1). Some readers may,
however, be wondering why we bother with (2.2.4). If our ultimate interest is in
studying household demand, why do we not simply start with (2.3.1)? An objec-
tive of this chapter is to answer that question. Briefly, one role of model (2.2.4)
is to suggest restrictions on the form of the functions g;. For example, it can be
shown that the model (2.2.4) implies the following three relationships between

the elasticities e;; and E;:

%akEk =1, 24.1)
%eik =—E, i=1,.,n, (24.2)
ai(ei,- + El.a].) = ai(ej,- +E;0;), forall i#j, (2.4.3)

where the E,’s and e,-i’s were defined by (2.3.2) and (2.3.3) and the o’s are
budget shares defined by

;= P&i/V,
i.e. o; is the share of household expenditure devoted to good /. In E2.1, E2.2 and
E2.6 you are asked to derive (2.4.1)—(2.4.3) from the model (2.2.4). For the
present, however, we need only note the power of these restrictions. They
provide 1 + n + (n?-n)/2 relationships between the elasticities. If n were 10, say,

¢ The elasticities are not normally assumed to be constants. Usual practice is to report

elasticity estimates at sample mean values for p and y.
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this would reduce the number of ‘free’ elasticities from 110 (n? price elasticities
and n income elasticities) to 54. That is to say, given 54 of the e’s and E’s, we
could compute the remaining 56 using (2.4.1)—(2.4.3) and observations of the
budget shares.” Even greater economizing of free parameters in the demand sys-
tem is possible if we are prepared to restrict the form of the utility function. In
E2.17 you will find that if the utility function is additive, i.e.

Ue) = 2 Ui,

then (2.4.3) may be replaced by
Ej o

e = —E,.a,- (l + _J) , forall i#j, 2.44)
where w is a scalar, independent of i and j. With (2.4.1), (2.4.2) and (2.4.4) we
have 1+ n + (n?-n-1) = n? restrictions.® If n = 10, the number of free elasticities
is reduced from 110 to 10. Since data on prices, income and consumption levels
is always scarce, prior information such as (2.4.1)—(2.4.4) plays a critical role in
econometric studies of demand systems. The smaller the number of free para-
meters to be estimated, the greater the chance that our limited data will yield
statistically satisfactory results.’

A second role of model (2.2.4) is to give demand theory some normative as
well as descriptive content. In many applications we will want to make descrip-
tive statements, e.g. statements of the form ‘household demand for clothing will
increase by 2 percent in response to a 1 percent increase in income’. We may also
want to make normative statements, e.g. ‘a 10 percent increase in the price of
food will reduce household welfare by the same amount as a 1 percent reduction
in income’. Once we begin to make statements about consumer welfare, some
form of welfare or utility function becomes essential. In this chapter we will
touch on the role of model (2.2.4) in welfare economics. E2.16, for example,
involves the concept of Pareto optimality. Our emphasis, however, will be on the
first use of model (2.2.4), i.e. its role in econometrics. Applications t» welfare
economics will be taken up more fully in Chapter 3.

7 Obviously not any 54 e’s and £”s would be adequate. For example, the 54 should not

include all 10 of the E’s.

8 (2.4.4) consists of n? —n equations, but it introduces one new parameter, w. Thus, the
number of restrictions is effectively (n* —n—1).

® For a short statement on this point see Phlips (1974, p. 56).
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Exercise 2.1. The Engel aggregation

Consider a consumer who chooses his consumption bundle, x,,...,x,,, to maxi-
mize his utility

U(xy,.-5X,) (E2.1.1)
subject to his budget constraint
%kak <y. (E2.1.2)

Prove the so-called Engel aggregation property, that the sum of the products of
each income elasticity with its budget proportion must equal 1, i.e.

%akEk =1, (E2.1.3)
where 5
X
P
yy  xg

and

o =P, X, [y, k=1,..,n.

Answer. We assume that the consumer spends his entire budget. (This follows
from the usual assumption that marginal utilities are strictly positive.) Then by
totally differentiating (E2.1.2) we find that

%(dpk)xk + %(dxk)pk =dy.

If all prices are held constant and only income is varied, then

Z (dxg)py = dy.
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Eq. (i) may be rewritten as

0Xx y XkP

Ky xx oy

H

i.e.

2E o =1.
e %

Exercise 2.2. Homogeneity restriction

Show that the demand equations of the form

xi = ¢i (pls"'apn’y),

which can be derived from the model (E2.1.1)—(E2.1.2), are homogeneous of
degree zero in prices and income. Now prove the ‘homogeneity restriction’, i.e.

%eik:—Ei, i=1,..,n, (E2.2.1)
where
ox; Pk
e, = — —
ik apk xi
and
ax, y
T oy X;

Answer.  The demand functions are homogeneous of degree zero if

¢;(BP 1,80, BY) = 0; (P15 sPpy > V) (i)

for all > 0. This means that if all prices and income are doubled, say, i.e. =2,
then there is no change in commodity demands.

To show that the demand functions derived from the constrained utility
maximizing model (E2.1.1)—(E2.1.2) are homogeneous of degree zero, we mul-
tiply the prices and income by a common factor §> 0. Then the constraint
(E.2.1.2) becomes

Eﬁpk Xy <By.

However, the constraint region is unaffected. The consumer’s choice of con-
sumption bundles is still restricted to the original set. Therefore, the utility-
maximizing consumption bundle will remain unchanged. This is sufficient to

justify (i).
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(E2.2.1) may be derived as follows: by totally differentiating the demand
functions we have

dx E 8x,- ax,-

=X — d —dy, i=1,..,n.
=% o, Py + 5 y, i n
These equations may be rewritten as

dx; ox; py dp,  Ox; y dy

Loy kK 12
X; kOp, X; P O Xx; Y
i.e. & q
p d
—'=Ze.k———k—+Ei—y, for all i.
xl k! Pk Yy
If we set
d dp
Y _ Tk , forall k,
y Py

then we know from (i) that dx; = 0. Hence
0=§€,-k5+15;ﬁ,

i.e.

Exercise 2.3. The linear expenditure system

(a) Here is a problem to test your facility at deriving the demand functions
implied by a specific utility maximizing model. Assume that a consumer has an
income of $y to divide between goods 1 and 2. What will be his demand for each
good as a function of y, p, and p,, where p, and p, are the commodity prices,
if his utility function is

Ux;,x;)=Inx; +21Inx, (E2.3.1)

and x, and x, are quantities of goods 1 and 27 (Check that the utility function
is strictly quasiconcave over the positive orthant.)

(b) Answer the same question for another consumer whose utility function
18

V(xy,x;)=x,X5. (E2.3.2)
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Do you obtain the same results? Why? Can you be sure that (E2.3.2) is strictly
quasiconcave?
(c) Now consider the more general case where

Uxy,x2) =81 In(x;—71) + B2 In(x,—7,) (E2.3.3)

and B,, B,, v, and 7, are parameters with 8,, 8, >0 and =, §; = 1.'° Derive the
demand functions for goods 1 and 2. Can you suggest why applied workers like
to include the v,? Hint: what is the income elasticity of demand for each of the
goods when the utility function has the form

U(xy,x,)=8; Inx; +f, In x,? (E2.34)
Answer.  (a) The first problem is to check that the utility function (E2.3.1) is
strictly quasiconcave over the positive orthant. We consider any two positive
consumption bundles x = (x;, x,) and y =(y,, ;). Assume that both U(x) and

U(y) are greater than or equal to y. Then we will have shown that U is strictly
quasiconcave over the positive orthant if we find that

Ulax + (1—a)y) >

for any « in the open interval (0, 1).
Under (E2.3.1),

U(ax + (1—a)py) =1n (ax; + (1—a)y;) + 2 In (ax; + (1—0)y,).
If ae (0, 1), then

Ulox +(1-a)y) > alnx; +(1-a)Iny, +a2lnx, +(1-a)21n y,.
(Draw a sketch to convince yourself that if ae (0, 1) then

In(a + (1—a)b) >alna+(1-a)Inb.)
Thus,

Ulax +(1-a)y)>aUX)+ (1—a) U(y) = 7.

This not only establishes that the utility function is strictly quasiconcave over
the positive orthant, but also that it is strictly concave. U is said to be strictly
concave if

U(ax + (1—a)y) > a U(x) + (1—-a) U(y)
for all x and y, where ae (0, 1).

' This is a convenient normalization. No loss of generality is implied. Why?
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Turning now to the main problem, we note that the consumer will choose
positive values for x,; and x, to maximize
Inx; +2Inx,
subject to
P1Xy + DXy SY.

The objective function is strictly quasiconcave over the positive orthant, the
constraint set is convex and satisfies a constraint qualification. We can proceed
with the Lagrangian method in confidence that it will yield the unique solution
for the optimal values of x,, x,. On forming the Lagrangian

L(x,\)=Inx; +2Inx, —A(p1Xx; +Pax, — ),

and equating the derivatives to zero, we find that at the consumption optimum

1/x, — Ap, =0, (E2.3.5)

2/x, —A\p; =0 (E2.3.6)
and

P1Xy +PaXy = ). (E2.3.7)

(We can ignore the sign restrictions on x; and x, and the possibility of the
budget constraint being a strict inequality. Utility is —oo if either x, or x, is
zero, and all the budget will be spent since 0U/dx; >0 for i = 1, 2 and any values

of the x;.)
From (E2.3.5) and (E2.3.6) we find that

X2 _P1

2x, P2
On substituting into (E2.3.7) we obtain

xy =y/3p, (E2.3.8a)
and

Xy =2y/3p,. (E2.3.8b)

(E2.3.8) is the system of demand equations arising from the utility function
(E2.3.1). Check that these demand equations are homogeneous of degree zero in
prices and expenditure level.

(b) For the second consumer, the one having the utility function (E2.3.2),
we notice that!?

In(V(x{,x,))=Inx; +21Inx, = U(x,, x,).

It becomes tedious continually to mention that x, and x, are restricted to the
positive orthant. For the remainder of this answer we will take that as understood.
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Hence, In V is exactly the same as the utility function, U, we had initially. Now
In ¥V is a positive (or increasing) monotonic transformation of V. In general,
F(V) is said to be such a transformation if

drF
——@ >0, for all values of V.

dv
This in turn implies
F(Vy) 2 F(V2)

if and only if V| 2 V,. In the particular case which we are studying in this
problem, we have
dF (V) _ dinV _ l_>0.
dv dv vV
Because U is a positive monotonic transformation of V, the demand systems
derived from the two utility functions will be the same or, to put the same point
another way, for given prices and incomes, the consumption pattern that maxi-
mizes a given utility function also maximizes all positive monotonic transforma-
tions of that function. See Henderson and Quandt (1971, sec. 2.3) if you need a
fuller discussion.
Given that F(V(x)) = U(x), that U(x) is strictly quasiconcave, and that F is a
positive monotonic transformation, can we be sure that V(x) is strictly quasicon-
cave? Let x and y be any two consumption bundles such that

VixX)>y and V(y)>1.

Then because F is a monotonically increasing function, we can write
U(x)=F(V(x)) > F(y)

and
UQp)=FV () > F(r).

Now since U is strictly quasiconcave,
Ulax + (1-a)y) > F(7)

for all ae (0, 1). Therefore
F(V(ox + (1-)y)) > F(7)

and again, because F' is monotonically increasing, we can conclude that
V(ax + (1—a)y) > 7.

This is sufficient to establish that V is strictly quasiconcave. Hence, we have
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shown that the property of strict quasiconcavity is preserved under positive
monotonic transformations. On the other hand, the property of strict concavity
is not necessarily preserved. Notice that while (E2.3.1) is strictly concave,
(E2.3.2) is not.

(c) We form the Lagrangian

L(x,N) =B In(x;—71) + B2 In (x2—72) =A@y X1 +P2X3 ).

The first-order conditions are

B .
— =MDy, i
P 1 6]

B2 ..

=D ii
P 2 (ii)

and
P1Xy + DXy =), (iii)

From (i) and (ii) we see that

Hence,

p,=1=) (y - gp,-v,.)
and

A= /(}’ - ?Pi')'i)- (iv)

Finally, we use (iv) in (i) and (ii) to obtain
b (v —Zipim)

X =Yg t k=1,2,
k= Yk o
or alternatively
PrXi =Py + By (}’—IZP,-')',-) , k=1,2. )

The equations (v) are the so-called linear expenditure system (LES). Expendi-
ture p, x, on each good & is a linear function of prices and income. This explains
much of the popularity in applied work of the n-commodity version of the
utility function (E2.3.3); see for example Powell (1974, ch. 2) and the refer-
ences given there. Notice that the v, play the key role of allowing expenditure
elasticities of demand to differ from 1. If each of the v, is zero, i.e. the utility
function is (E2.3.4), then
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Bry
X, = —
k P
and )
X i
E,=— 2 -1
Wy X

A utility specification which forces expenditure elasticities to 1 is unsatisfactory
in empirical applications. Expenditure elasticities are comparatively easily esti-
mated. Typically, expenditure elasticities for ‘food’ are less than 1, whereas for
‘recreation’ they are more than 1. For a pioneering study of expenditure elas-
ticities, see Houthakker (1957).

A common interpretation of the linear expenditure system (v) is as follows.
v, is said to be the ‘subsistence’ requirement for good k. Then Zp;v; is the
subsistence level of expenditure and (y — Z,p;7,) is supernumerary expenditure,
i.e. expenditure above subsistence requirements. §, is the marginal budget share,
i.e. B, is the additional expenditure on good k associated with an additional
dollar of total expenditure. Thus, system (v) is interpreted as meaning that
expenditure on good k consists of two parts: a subsistence part, p,v,, and a
supernumerary part, 8, (v — Z,p;v,;), with supernumerary expenditure on good &
being proportional to total supernumerary expenditure. It should be pointed
out, however, that this interpretation of the linear expenditure system fre-
quently breaks down in empirical work. Often we find negative estimates for the
Y« ’s- Such results are incompatible with the idea that the v, ’s are subsistence
quantities. As explained above, the key role of the vy’s is to give system (V)
flexibility with respect to the implied expenditure elasticities. Empirically and
theoretically unjustified restrictions on the values of the expenditure elasticities
can be introduced by attempts to restrict the y’s to positive values.

Exercise 2.4. The marginal utility of income

Return to the consumer described in the first part of E2.3. Assuming that the
utility function is (E2.3.1), express the marginal utility of income as a function
of p;, p, and y. Repeat this exercise for the utility function (E2.3.2). Does the
marginal utility of income change as we switch between the two utility func-
tions? On the basis of your answer to that question, would you say that marginal
utility is an ordinal or cardinal concept?

Answer.  First we recall the analysis of Chapter 1, section 8. On the basis of
that argument we know that the Lagrangian multiplier may be interpreted as the
marginal utility of income, i.e.

aU/ay = A,
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where oU/dy is the marginal utility of income, i.e. the rate of increase in utility
per unit increase in y, and A is the Lagrangian multiplier associated with the
solution to the utility maximizing problem. Then from (E2.3.5) and (E2.3.6) we
find that

Wixy =1
and

Ayx, = 2.
Hence

Ay =3

A =3/y. ()
With the utility function (E2.3.2), the first-order conditions are
X3 — \*p, =0,
2x1x, — N*p, =0
and
Pi1Xy +P2X, =).
These give
A*pix, =x,x2
and (i)
A*Dyx, = 2%, X5
Hence
P2Xy =2p1 Xy,
xy =y/3p,
and
Xy =2y/3p,.
Substituting back into (ii), we obtain
.
/293
By comparing (iii) and (i) we see that although a positive monotonic transforma-

(i
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tion of the utility function leaves the demand system unchanged, it does change
the marginal utility of income. Thus, we may conclude that marginal utility is a
cardinal concept. It depends on which particular utility function is selected from
the family of equivalent utility functions describing the consumer’s given set of
preferences.

Exercise 2.5. Displacement analysis, an example

Consider the consumer described in the first part of E2.3. Adopting the utility
function (E2.3.1), but without deriving the demand functions, find equations
suitable for evaluating the changes in x;, x, and A, the marginal utility of
income, which will result from small changes in the prices p; and p, and in
income y.'> From these equations, determine the income effects dx,/dy,
0x,/dy, and the effects of changes in p;, on x, and x,, i.e. 0x,/dp, and
0x,/0p;. What are the signs of the income effects? What property of the utility
function is responsible for this result? Show that the cross substitution effect,
0x,/0p,, is zero. You may check your calculations of the various partial deriva-
tives by making appropriate differentiations of the demand functions which you
derived in E2.3.

Answer. We assume that when prices and income change, the consumer re-
organizes his purchases so that he maximizes his utility subject to his new budget
constraint. At his new consumption levels, x; (N), x, (), there will exist A(V)
such that

1 )
- V) - MN)p(N) =0, (1)
2 ..
i~ W =0 (i)

and
P1(N) x1(N) + p,(N) x,(N) = y(N), (iii)

where p; (N), p,(N) and y(N) are the new levels for p,, p, and y.

Next, we compare the original first-order conditions (E2.3.5)—(E2.3.7) with
the new first-order conditions (i)—(iii). By subtracting (E2.3.5) from (i) we
obtain

'2 If you have difficulty with this problem, you should review the rclevant theory in

Intriligator (1971, ch. 7, esp. sec. 7.4).
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where d(1/x;) and d(\,p,) are the changes in 1/x, and Ap,. If the changes are
small, this last equation becomes

a(1/x,) dx,

axl

1.e.

0w

oA

0w

op,

1
— = dx, — py dA — Adp, =0.

X3

Similarly, by totally differentiating (E2.3.6) and (E2.3.7) we find that

2

- T2 Mz—pzdx-kdp2=0

X
and

D1 =0)

p1dx; +pydx, +(dpy)x; +(dpy)x, =dy.

The three equations (iv)—(vi) may be set out in a convenient matrix format as

1
2
1

=

=

dx,

dx;

—dA

—

Adp,

Adp,

dy - ?(dpi)x,-

—

Adp,

Adp,

dy - ?(dpi)xi

(iv)

™)

(vi)

(vii)

The matrix to be inverted is the so-called bordered Hessian of the utility func-
tion (E2.3.1). On carrying out the inversion we find that



88 Notes and problems in microeconomic theory

dx, F—pi PPy 5
X2
I 4

dx, |= 2 2 P1P2 "P? ‘—;
() () i

X X2 2y D 2

—dA 2 T2 2_2

L X, X XX,

Adp,
x | Adp, , (viii)

dy — 2 (@dp,)x.:
_y i(p,)X,J

(If you have trouble with inverting matrices, check that we have the right answer
by multiplying our inverse by the original bordered Hessian. You should gener-
ate the identity matrix.)

Eq. (viii) is suitable for evaluating the effects of changes in prices and income
on consumption levels and on the marginal utility of income. We have derived it
without explicitly obtaining the demand system (E2.3.8). In the present exam-
ple this is not very useful. However, the technique becomes important when the
demand functions cannot be derived explicitly. The point is illustrated in E2.6
and E.2.17.

On the basis of eq. (viii), we can compute the income derivatives, dx, /dy and
0x,/dy, as follows: if we consider a situation in which prices are fixed, but
income changes, then

- - _ _
2
dx, !
X2
1 p
dxp |= =3 X x—; dy.
() ()|
1 2 2
—dA ST
] x5 x
B
Hence,
0x, 2pl/x§

= (ix)
W (pafx) ) +2p1/x,)
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and

aX2 p2/xf

ay B (172/'3C1)2"'2(l71/x2)2

Both income derivatives are positive. This result is attributable to the additivity
of the utility function. With this type of utility function, quantities consumed of
any good do not affect the marginal utility of other goods. Hence, increases in
income must result in increases in the purchases of all goods, for otherwise the
marginal utility of a dollar’s worth of expenditure on some goods would be left
higher than that on others. Accordingly, the additive utility function excludes
the possibility of inferior goods.

To determine the price derivatives dx,/dp, and dx,/dp,, we set dy and dp,
equal to zero. Then (viii) implies that

1
dx, |= -p:  2p,/x?
1 (Pz/x1)2 + 2(p1/x2)2 P2 P1/%; Aps
dx, P1D2 Pz/xf —x,dp,
From here we find that
0x, _ 1 (—)\p2 B 2x,py )
Wp1 (pafx) +2pifx)* \ 0 x)
and
aX2 1 D2
apl - (pz/xl)z +2(p1/X2)2 (M‘pz— xl ) .
Finally, if we use the first-order condition (E2.3.5), we see that

A=1/pyx,

so that the cross substitution effect, dx,/dp, , is zero.
The derivations of dx,/dy, 0x,/dy, etc. can be checked by differentiating in
the demand system (E2.3.8). For example, we find that

and
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(This last result may be obtained from (ix) by substituting from (E2.3.5) and
(E2.3.6) to eliminate the x’s and then simplifying.)

Exercise 2.6. Displacement analysis and the symmetry restriction

In E2.5, working with”a special case, you obtained an expression for evaluating
changes in the consumption of various commodities as a function of changes in
prices and income. Now consider the general case where there are n goods
Xi,...,X,,; their prices are py,...,p,;; and the consumer has income y and a strictly
quasiconcave utility function U(xy,...,x,,). Show that

H p dx Adp
= , (E2.6.1)
p 0 —dA dy — (dp)'x
where H is the Hessian matrix of the utility function, i.e.
_ 02U
H= [Uij]n xns> With U = ox, axj )

p and x are vectors of prices and consumptions, and A is the marginal utility of in-
come.
Adopt the notation

| Fivs o Tins Tinea
H p
R = = (T, - Tnnsy Thn+i
’
p O
rn+ll"“ rn+l n+1 _J

Note that R is a symmetric matrix. (Why?) Now prove the symmetry restriction,
ie.

o;(e;; + E;oy) = oy(ej; + E 79;), forall i#/, (E2.6.2)
where the a’s, E’s and e’s are defined as in E2.1 and E2.2.

Answer. We assume that the consumer chooses x, x;,...,x,, t0 maximize

U(xl ,...,xn)
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2D, X, =Y.
kpkky
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At a constrained maximum there will exist A, which may be interpreted as the

marginal utility of income, such that A, x;,...,x, , jointly satisfy

— =Ap, i=1,.,n
ox; Pi

i

and
2D, X, =Y.
kpkky

By totally differentiating (i) and (ii) we find that

3 (U
> — (—)dxk=(d7\)pi+>\(dpi), i=1,..n,

k 0x, \ 0x;

and

2 (dpye) Xy + 2y (dx;) = dy-

In matrix notation, these equations may be presented as

’_Ull’ oos Uln’ pl— .—dxl ] —del
Un 1° Unn ’ pn dxn = )\dpn
Py P 0 | L—dk_ _dy — %(dpk)xk
i.e.
H p dx Adp
p o0 —d\ dy — (dp)'x

The bordered Hessian,
H p

!

p 0

@

(ii)

(i)
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is symmetric (from Young’s theorem'3 U;; = Uy for all i and j). Thus, R, the
inverse of the bordered Hessian, is also symmetric."* (If 4 is any symmetric

matrix, then 471, if it exists, is symmetric.)'

On solving (iii) we obtain

—

dx Adp
=R
—dA dy — (dp)'x

or, more fully,

. ] — T r .
dx, Fiis T Fingt Adp,
dx )
E 2 = (IV)
dxn Tns - Tans rnn+l Adpn
—dA Tnerr - Tns1 sl dy - %(dpk)xk

From (iv) we can deduce the derivatives of the demand functions. In particular

Bxk

—a}— =renet? k=1,.,n (V)

(setdy=1, anddp; =0, i=1,...,n) and

axk )
5— =Nys — (Fene1)Xs, forall k and s (vi)
s

(set dp, = 1, and all the-other-price Thanges and dy to zero). Because rij =i
eq. (vi) implies that

0x i ox j

o T A =—(rin+l)x‘+(r'n+l)xi' (vii)
op; dp I

13 See, for example, Hilton (1960, pp. 49—-51).

4 The strict quasiconcavity of U ensures that the consumer’s utility-maximizing prob-
lem has one, and only one, solution for each choice of p > 0 and y > 0. This in turn ensures
the existence of R. However, we usually make the additional assumption that AH-! exists.
This is convenient, but it does not follow from the assumption of strict quasiconcavity (or
even strict concavity). For example, consider the problem of choosing the scalar, x, to
maximize the strictly quasiconcave objective function (x-1)* subject to x < 1. You will find
that at the optimum value for x, (x = 1), the Hessian is zero, but that the R matrix exists.

15 (A7 'YA'= (4A47") = 1. Hence, (4')! = (47'). If 4 is symmetric then it follows that
At =(A7'). Hence, A~! is symmetric.
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Then from (v) and (vii) we obtain

ox;  0x

w, o, =% x;+ % X;. (viii)
The final step in the derivation of the symmetry restriction is to translate the
derivatives into elasticities. In (ix) the terms of the original equation (viii) are
displayed in square brackets. The translation to elasticities is made in the usual
way by multiplying and dividing through by prices, income and quantities:

XiPi p, ,p, Pi [ 9%y
aP, pipi xj | op; |Pipj

XiPi y 0x; [xj]l’,' y XiPbj y 0x; [x:1p; y (ix)
= — + - , UX
y x| oy Y DiPj y xi| oy Yy pipj

e — Qe = a,E,a]+aEa

i.e.

and this last equation can be rearranged to give (E2.6.2).

Exercise 2.7. The triad

Alan Powell (1974) has referred to the three results, the Engel aggregation
(E2.1.3), the homogeneity restriction (E2.2.1), and the symmetry restriction
(E2.6.2), as the ‘triad’. Some appreciation of the power of the triad can be

gained by completing the following scheme: !¢

1 1 1

a =3, a =g, az =3z
1
e =-1, e =7, e;3 =0 E,=3
en =7, €y =1, €3 =" E, =7

1

ez =17, €3 =—73, e33 =7 Ey =1

16 The E’s, o’s and €’s are defined as in E2.1 and E2.2.
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Answer. The completed table is shown below:

1 1 1
o =3, Qy =3, Q3 =3
1 =1 0 E, =1
€ =-—1, €12 =3, Ci3 = 1 =3
1 1
€21 =73 622__14a €23 = —3 E, =2
1 1 1
€31 =—73> €32 = —3, €33 = —3 E;=1

Starting from the incomplete table, we used the homegeneity restriction to find
€12, 1.e.

e =—Ey —en —ej3.
E, was computed from the Engel aggregation, i.e.
E,=(1-E o — E303)] a3,

The symmetry restriction allowed us to compute e,; from knowing ey, , the E’s
and the o’s:
a (e; + E )

ey = —Eza,.
4%}

Similarly, we used the symmetry restriction to generate e;; and e, . Finally,
ey, and es3 were deduced from the homogeneity restriction.

On the basis of knowing the budget shares, the ;’s, and five of the elastici-
ties, we were able to deduce the other seven elasticities. The triad provides 1 + n
+ n(n-1)/2 restrictions. When n = 3 the triad suggests seven independent relation-
ships between the elasticities.

The estimation of demand elasticities, £; and e;;, has been the objective of
intensive econometric activity. Excellent survey texts are available, for example,
Powell (1974) and Phlips (1974). Both these references emphasize the impor-
tance of prior restrictions in econometric work. It is too much to ask ‘the data’
to reveal n? + n elasticities without some help from economic theory. The impo-
sition of the triad restrictions, and perhaps some additional restrictions (see
E2.17), has made possible the estimation of complete systems of demand elas-
ticities.
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Exercise 2.8. The Cournot aggregation
Prove that
2oe, =—o, forall k.
I
Is this a further restriction on the demand elasticities, or is it implied by the
triad?
Answer.  We assume that
ZpiX; =Y.
By total differentiation we obtain
?(dpi)xi + lz:(dx,')p,' =dy.
Now we set all the price and income changes to zero with the exception of dp, .
Thus,
(dpy ) x; + lz,;(dxi)p,' =0
and ()

Finally, we translate into elasticities and budget shares by rewriting (i) as

[—xk]Pk _s ax; | px xi[pi]
y i || oy

i.e.

Restriction (ii) cannot be counted as additional to the triad. It can be de-
duced as follows: the symmetry restrictions imply

'zeikai = lz[ak(eki +E, o) — E;op0, ]

O‘k‘?—"’ki + oy By ? o; — “k?o‘iEi

(We have used the homogeneity restriction, the Engel aggregation and the fact
that Z,o; = 1.) Hence,
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? Cip O = — 0.

The Cournot aggregation suggests an interesting question. Can we be sure that
the triad contains all the useful restrictions which flow from the utility-maxi-
mizing model in which the utility function is strictly quasiconcave and differen-
tiable, but otherwise unrestricted? Even though we have found that the Cournot
aggregation is implied by the triad, perhaps there are other restrictions which are
independent of the triad? The answer is that apart from some restrictions on the
signs of various price elasticities (see E2.10), the triad does summarize the com-
plete set of restrictions on the demand elasticities. This is a principal conclusion
from the literature on the so-called integrability problem. But since integrability
is rather a difficult topic, we will delay consideration of it until Chapter 3.

Exercise 2.9. The Hicks—Slutsky partition

Show that for all i and j,

ax,— Bx,- ax,-
_— = — xi (E291)
op; op; ' au=o0 ay

or, equivalently,

where (0x;/0p;)q u=o is the compensated derivative of the demand for good i with
respect to changes in price J, i.e. ax,./ap,.d U=o iS the effect on the demand for
good i when there is a change in both p; and a change in y which is sufficient to
allow the consumer to maintain his initial level of utility. e,?i is the compensated
elasticity, i.e.

T xi \Opj/qu=0
Hint: the first step is to find the change in income, dy, which is necessary to
compensate for a change, dp;, in price j. This can be done by noting that

oU
dU=§ a_xk dxk=§>\pk dx, =0 (E29.3)
and
dy = %pkdxk +(dp))x;, (E29.4)

(-4
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where dU is the change in utility and the dx,, dy are the changes in consump-
tion levels and income arising from the compensated change in p;. X is the
marginal utility of income

Answer.  From (E2.9.3) and (E.2.9.4) we see that the compensation, dy,
necessary to allow the consumer to retain his initial level of utility is given by

dy = (dp].)x,..

Therefore the change in x; arising from both a change in p;and a utility compen-
sating change in income is

axi ax,-
(dxi)dU=0 = o, dp; + B (dp)) x;,

ie.
axi ax,- ax,-
(—) =— + — X, (E2.9.5)
opjlav=0 Op; Oy
This equation can quickly be rearranged to give (E2.9.1) and (E2.9.2).

The Hicks—Slutsky partition divides the total effect on x; of a change in p; into
two parts. Referring to (E2.9.1), the first term on the right is the substitution
effect. In terms of the usual diagram,'” the substitution effect arises from the
movement around the initial indifference curve. The second term is the income
effect. It captures the idea that an uncompensated change in p; will affect the
consumer’s purchases of good i by affecting the real value of his total budget.

Exercise 2.10. The negativity of the own-price substitution effect

Demonstrate that

ax,-
(—) <0, forall i
op;i/au=0

This can be done by appealing to the second-order conditions, see for example
Lancaster (1968, pp. 56—58). However, a simpler and more direct argument is

available using ideas from the theory of revealed preference, see for example
Lancaster (1968, pp. 125—127) or Baumol (1972, pp. 231-232).

Answer. We assume that the consumer chooses his consumption vector x to
maximize a strictly quasiconcave, differentiable utility function, U(x), subject to

17 See, for example, Intriligator (1971, p. 161).
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his budget constraint p'x = y.'® We consider two situations in both of which the
consumer achieves the same utility level. The two situations can be thought of as
the initial and final situations after a compensated change in prices. In the first
situation the price vector is p and income is y. In the second, the price vector is
p, not equal to p, and income is y.*> Where X and X are the optimum consump-
tion vectors for each situation, we have

UG) = UG),
with X #X.

Fig. E2.10.1 illustrates the two situations tor the two-good case. It will be
noticed that the indifference curve is ‘smooth’ with no linear segments or ‘cor-
ners’ and with the right convexity. The strict quasiconcavity assumption rules
out the possibility of linear segments and the differentiability assumption ex-
cludes indifference curves of the type shown in fig. E2.10.2. (After you have
understood the argument given here, you might work out what modifications are
necessary if the utility function is not strictly quasiconcave or has nondifferen-
tiable points.)

We note that

P'X>y=p'% @

X

Figure £2.10.1

13 We assume that the consumer spends his entire budget.
19 We assume that relative prices have changed, i.e. p # gp, where g is a scalar.
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X2

““corner’’ point

/

U(x) = constant

Figure E2.10.2

and

p'x>y=p'X. (ii)
The first of these inequalities means that when the consumer was faced with the
initial prices, p, and income, ¥, he could not afford the consumption vector x-
If p' X were equal to or less than 7, then X and X would be alternative optima for
the initial consumer problem. However, the assumption of strict quasiconcavity
implies that the consumer problem has a unique solution. The justification for
inequality (ii) is similar to that for (i).

From (i) and (ii) we find that

p'x-%x)>0
and

p' (x—x)>0.
Hence

P'x—X)+p (X—-X)>0,
1.€.

@' -p)E-%)>0
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and
¢'-p") x-x%<0.
This final inequality can be written as
(dp) (dx) <0, (iii)

where dp and dx are the vectors of price and consumption changes between the
final and initial situations. In the special case where only price i/ changes, then

(dp,) (dx,) <0.

Hence a compensated increase in p; produces a reduction in x;; (dp;) and (dx;)
are of opposite signs. We can conclude that

ax,-
! <0. (E2.10.1)
®;’qu=0

It is usual to conclude that

ax,-
() <o
pilau=o

P;

 J O —

*
i Xi

Figure E2.10.3. aa is the compensated demand curve for
good i, i.e. it shows the demand for good i as we vary p;
holding all other prices and the utility level constant. The
curve is consistent with having
(dp;) (dx;) < 0.

But it is also true that

ox;

w) 70

Pilqy=0

at the point where x; = x;.
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Our argument, however, has not explicitly ruled out the case illustrated in fig.
E2.10.3. Hence, we will be content with (E2.10.1).

For future reference (see E3.14) it will be useful to note that in addition to
(E2.10.1), (iii) implies that the matrix of compensated own and cross price
derivatives is negative semidefinite. (A symmetric matrix A is said to be negative
semidefinite if x'Ax < 0 for all choices of the vector x.) To obtain this result we
write

dx = Gdp, (iv)

where dx is the vector of changes in consumption arising from a compensated
change in prices dp, and G is the matrix of compensated own and cross price
derivatives,?° i.e.

ax,-
Gii = (—————) , forall i,j.
pjJav=0
If dp = Bp, where 8 is a scalar, then
dx =0. )

(A compensated proportionate change in all prices leaves consumption un-
changed.) If dp # fp, then according to (iii) we have

(dp) dx <O0. (vi)
On combining (iv)—(vi) we see that

(dp)' Gdp <0 (E2.10.2)
for all choices of dp.

Exercise 2.11. The inferiority of Giffen goods

Are all Giffen goods inferior?

Answer.  For Giffen goods we have
ox i ax,- ox i

()
op; api/qu=0 ay

2 G is the matrix of derivatives whose typical element is defined by (E2.9.5). Notice

that G is symmetric, i.e.

( axi) ax]'
%j/qu=0 (api)dU=o

This follows from (E2.9.5) and the symmetry restriction — see in particular eq. (viii) in
(E2.6).
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Given the nonpositivity of the own-price substitution effect, the above inequality
implies that

ax,-

— <0.

oy

Hence, Giffen goods are inferior.

Exercise 2.12. The sign of cross-elasticities of demand

Although two goods i and j may be substitutes, the cross-elasticity of demand
for i with respect to changes in the price of j can be negative. Explain with the
aid of a suitable diagram.

Answer.  Two goods i and j are said to be substitutes if and only if

( ZE) =0. (i)
opj/au=o0
Inequality (i) may also be written as
e;; = 0. (ii)
X2

Initial budget line

Budget line after an increase in p,

U(x) = U(x)

U(x) = U(X)

X4

Figure E2.12.1. An increasc in p, moves the consumer cquilibrium from X to
X. In particular an increase in p, reduces x ,ie.e,, <O0.



Problem set 2 103

The Hicks—Slutsky partition implies that

e = e;?j - o E;
(see (E2.9.2)).

If o, E; >e;’i, then despite (ii), ¢;; will be negative. Fig. E2.12.1 illustrates a
situation, for the two-good model, in which goods 1 and 2 are substitutes (in
view of E2.13, they could not be anything else), yet the cross-elasticity of

demand e,, is negative.
Exercise 2.13. Substitutes, the two-good case

Show that in the two-good case, all goods must be substitutes.

Answer.  For the two-good case we consider a compensated increase in p; with
p, constant. Then the changes in x; and x, are

and
0x,

dx =(—) dp,.
2 op1/du=o0 l

The change in utility is given by

- oU oU
dU= — dx; + — dx, =0.
axl aX2
Hence
BU)(ax,) (BU)(axz) .
— M — dp, + | — -— dp =0. (l)
(ax, op,/ qu=o0 ' dx3/ \0p1/qu=o0 l

We assume that 0U/dx, and dU/dx, are positive. In fact, they are equal to the
marginal utility of income multiplied by the respective prices. We also know that
the own-price substitution effect is nonpositive. We may conclude from (i), that

(ax_,) >0
o1 /av=0

Hence goods 1 and 2 are substitutes.
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Exercise 2.14. Consumer behavior under rationing

Assume that a consumer has the utility function
U(xlsx2) =X1X2,

where x, and x, represent the amounts of two goods, 1 and 2, consumed in a
given time period. Find his utility-maximizing consumption levels subject to the
budget constraint

5x; +4x, <50 (p; =95,p, =4andy =50).

Now suppose that a rationing system is imposed on the consumer. The ration
point ‘prices’ of x, and x, are 3 and 6, respectively, and the consumer is issued a
total of 40 ration points. Find his optimum consumption levels. Are both the
ration and budget constraints binding? What is the effect on the consumer’s
utility of having respectively one more ration point and one more dollar.

Demonstrate that the existence of a market for ration points will improve the
consumer’s welfare. In particular, calculate the consumer’s utility, optimum con-
sumption levels, and the number of ration points which he buys or sells when
the price of a ration point is p; = 0.5.

Answer. In the initial situation, i.e. before the imposition of rationing, the
consumer will choose non-negative values for x; and x, to maximize

XX,
subject to

5x, +4x, <50.

We may assume that the constraint is binding and that the optimal values for
x, and x, are strictly positive. Thus, the first-order conditions for a solution are

X2—5>\ =0,
Xy —4\ =0 (¥
le +4x2=50.

From (i), we find that
Xy =5, Xy =6% and A= 1%.

With the imposition of rationing, the consumer’s problem becomes that of
choosing non-negative values for x; and x, to maximize

X1X2 (ii)
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subject to

5xy +4x, <50
and

3x, + 6x, < 40.

It is obvious that the optimal values of x; and x, will be strictly positive. On
the other hand, it is not obvious which of the constraints will be binding. Hence
we cannot take any short cuts.

On applying the Lagrangian method to generate the first-order conditions, we
find that at a solution for problem (ii) there will exist non-negative values for A,
and A, such that

Xy —S5A; — 3\, = 0,
X; —4A; — 6N, = O,
5x; +4x, — 50 < O, | (iii)
3x, +6x, —40 < O,
Ay (5xp +4x, —50) = 0,
Ay (3x; +6x, —40) = 0.

Certainly, not both A; and A, can be zero. This would imply that x, and x,
are both zero, giving a value of zero for the objective function. There is no
doubt that the consumer can do better than that.

Can we have A\, =0 with A; > 0? If A\; >0, then the first constraint holds as
an equality, i.e.

S5x; +4x, —50=0.

Also, with A, = 0 the first two equations in (iii) imply that
Sx, —4x, =0.

From here we obtain
x; =5 and x, =6%.

However, these values for x; and x, violate the second constraint.
Can we have A\, = 0 with A\, > 0? Under these conditions, we find that

3x, +6x, =40

and
xl —sz = 0.
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This gives
X, = 6%; Xq = 31,
and these values of x, and x,, together with

A =0 and A, =1

=Rl

satisfy (iii).
The final case to be checked is A\, >0, X\, >0. This would imply that both
constraints were binding, giving
X, =199 and x, =%.
Then from the first two equations in (iii) we would have
Zgé = 5)\1 + 3)\2
and

R -4\ + 61,
i.e.

10 125
>\l =—2 and Rz =781 ¢

Negative values for the \’s are not allowed. We may conclude that the problem
solution occurs in the second case examined, i.e. with A; = 0 and A, > 0, giving
x; = 6% and x, = 3%.

The marginal utilities of dollars and ration points are given by the Lagrangian
multipliers. An additional dollar generates no utility. (Notice that the consumer
is not using all his dollar budget.) On the other hand, an additional ration point
will yield 1% units of utility.

It is now clear that the consumer must benefit from the existence of a market
for ration points. At the margin, dollars are of no value to him. If he can trade
dollars for ration points, he will be able to achieve a higher level of utility. In
particular, if ration points can be bought and sold for $%, then he is free to
choose non-negative values for x, and x, to maximize

X1X2 (iv)
subject to
(5+13)x; +(4+3)x, <50 +20.

The price of good 1 is $§ 5 plus 3 ration points, or effectively $ 6-;-. The price of
good 2 is § 4 plus 6 ration points, or effectively $ 7. The consumer’s budget is
$ 50 plus 40 ration points, or effectively $ 70. Alternatively we could work in
ration points. Then the budget constraint would be
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(10 4+ 3)x; +(8 + 6)x, <100 + 40.

The price of good 1 would be 13 ration points, etc.
Proceeding with problem (iv) we find that the first-order conditions are

X, — 6310 =0,

x; —7A=0
and

63x; + 7x, = 70,
and thus

7
x, =9 and x,=5.

With the existence of the market for ration points, the consumer has increased
his utility from

Uy = (63) (33) = 223,
where U, is his initial utility under rationing, to
Uy = () (5) = 2633
He has done this by trading dollars for ration points. He now uses
(3 3 +(5)(6) = 4655
ration points. Of his § 50 budget, he has used
(653) () =$ 33
to buy additional ration points and
(5) (3) +(4) (5) = § 463

to meet the dollar prices of his purchases of goods 1 and 2.

Exercise 2.15. The allocation of time

A self-sufficient farmer lives on produce he grows himself under conditions of
diminishing marginal productivity of labor. The length of his working time can
be explained in terms of a utility-maximizing choice between agricultural pro-
duce and leisure. There is a minimum real hourly wage rate which could just
induce him to quit farming and become a hired worker. If this minimum wage
were offered to him, and he became a hired worker, would the length of his
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working time (1) remain the same, (2) become shorter, or (3) become longer
than when he was a self-sufficient farmer?

What institutional assumptions are implicit in your response? Note that for
the farmer, who owns all the necessary means of production, the labor—leisure
choice is a real possibility. Under what conditions will the wage laborer have
control over his hours of work?

Answer.  The solution to this problem can be seen immediately in fig. E2.15.1.
uu is an indifference curve for the farmer’s produce-leisure choice; LP is his
consumption possibilities curve while he remains self-employed. (What is the
relationship of LP to the total product of labor curve?) The curvature of LP
exhibits diminishing marginal product. The farmer’s utility-maximizing combina-
tion of leisure and product is at A. If the farmer becomes a wage-earner, his
consumption possibilities curve changes to a straight line; i.e. we are assuming
that the farmer is paid a fixed amount of ‘product’ per hour. The slope of LB
represents the minimum hourly wage rate which could induce him to quit farm-
ing; the corresponding consumption possibilities line LB just allows him to reach
uu. It is clear that as a wage-earner the farmer will work longer than when he was
self-employed. His utility-maximizing bundle is at B, giving him more product
but less leisure than at 4.

Product

L Leisure
Figure E2.15.1
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Be sure you understand why the answer depends crucially on the fact that for
the self-employed farmer the marginal rate of transformation of leisure into
product is diminishing, but when he hires his labor out on the market, he faces a
constant marginal rate of transformation of leisure into product.

Exercise 2.16. Pure exchange and Pareto optimality

Consider an economy of two men who consume just two goods, x and y. Man 1
has an intitial endowment of 40 units of x and 160 of y while man 2 has 240
and 120 units of x and y, respectively. Assume that the men have the following
utility functions:

U, = x,y; = utility of man 1
U, = xzyz = utility of man 2,

where x; and y; are the amounts of goods x and y consumed by man i.

(a) Using the standard geometrical apparatus (the ‘Edgeworth—Bowley
box’), show that in general there exists some exchange (trade) between the two
which will result in their both obtaining a higher level of utility.

(b) We define a situation to be efficient or Pareto optimal if there is no
reallocation of commodities between the two men which gives one of them
higher utility without lowering the utility of the other. Show that a necessary
condition for efficiency is

ou, faU, aU, /al,

0x, Y, - 0x, y,
Is the assumption of efficiency sufficient to determine what trading will be done
between man 1 and man 2?

(c) Under the assumption of competition, each man faces a common set of
prices p, and p,,- Each maximizes his utility subject to his budget constraint and
prices adjust so that supply equals demand for all goods. Determine the competi-
tive values for x,, y,, x,, ¥, and p,. We may assume that p, = 1. (Why?) If the
algebra becomes a little tedious, you may prefer to limit yourself to wrmng
down the relevant equatlons and checking that x; = 140, x, = 140, y, = 933 , Va2

= 1865 and p, = 13 is the solution. Is the competitive allocation of goods Pareto
optlmal?

Answer,

(a) Consider fig. E2.16.1. A represents the initial endowments. Both men
gain welfare by any trade which moves them into the shaded area.



110 Notes and problems in microeconomic theory

280 X2 1
Y2
160
IC,
Y1
280

Figure E£2.16.1

(b) Goods x and y can be allocated efficiently only if x,, y,, x, and y,
maximize
Uy(xy,¥1) )

subject to
Uz = U, (x2,)2),
X; +X, =El +.Y2

and

YVi+Ya=Y1+)V2,

where U, is a predetermined level of utility for consumer 2 and the X;, ; are the
initial endowments. In other words, given the utility level of man 2, efficiency
implies that the available goods must be allocated so that the utility level for
man 1 is a maximum. Alternatively, we could work with a problem in which
man 2’s utility is maximized subject to achieving a given level of utility for man
1 and subject to the availability of goods.

Necessary conditions for the solution of problem (i) can be generated by
differentiating the Lagrangian,

L=U,(x1,71) = NUp=Us(x3,¥5))
— T (xy +x3 =X —X) =, (1 +Y2 — ) = V2);
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where A, Il and ﬂy are the Lagrangian multipliers. Hence, for an efficient
allocation, we will have

oU, i _ 0
ox, x S
0y =0,
y, Y -
aU,
A — =0
a.X2 Hx
and
U
A% s,
9y, Y
as well as the initial constraints. By carrying out the obvious divisions we find
that
I1
x _9U, fau, 3, foU, (E2.16.1)
1, ox,; / 9y, 0x, / 9y,

Efficiency alone is not sufficient to determine the trading pattern between
man 1 and man 2. Efficiency merely locates us on the contract curve, see fig.
E2.16.2. Different points on the contract curve may be generated by changing

I \ - Y 1 X+ X,
ICY IC5 ICy’
Figure I:2.16.2. IC;, IC} and IC;" arc three indifference curves for man 1 and IC;,

ICY and IC}" are three indifference curves for man 2. The contract curve or locus of
cfficicnt points, i.c. those satisfying (I:2.16.1), is shown as A4, B, C.
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the value of U, in problem (i). As we increase U, the solution of problem (i)
moves along the contract curve towards /. To attain a unique solution for the
trading problem, we need some additional information or restrictions. These
might be provided by having some rule which allows us to evaluate alternative
distributions of utility (a social welfare function) and to choose the one we like
best. But in the absence of a social welfare function (or some other device), the
indeterminacy remains.
(c) Man 1 chooses x; and y, to maximize

X101
subject to

PyX1 +P )1 = p, 40 +p, 160.
The first-order conditions are

Y1 = 7\Px,

XL = )\Py
and

PyX1 +Py Y1 = p,40 tp, 160.

On eliminating A we obtain

p ..
Xy = (_y) Vi1 (ii)
Px
and
p p
X1 +(—1)y1 =40 + 160 (—1) A (iii)
Px Px
Similarly we find that for man 2,
p )
2x, = (_y‘) Y2 (iv)
Px
and
p p
X, +(—’i) y2=240+120(——y-). )
X px

21 Eq. (iii) is simply a rearrangement of the budget constraint. This form will be
convenient for our explanation of why the competitive equilibrium determines relative
prices, but not absolute prices.
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Finally, we note that total consumption must equal the total supplies, i.e.
x, +x, =280 (=X, +X3) (vi)
and

Y1 +y2 =280 (=y; +7,). (vii)

To summarize, we have found that x,, x,, ¥,, V, and py/px are consistent
with the competitive equilibrium only if they satisfy eqs. (i1)—(vii). Notice that
relative prices, (py/px), not absolute prices, appear in the equations. Hence we
can assume that p_ = 1 (or any other positive number) and determine p,,. Also,
it is worth pointing out that any one of the equations (iii), (v), (vi) and (vii) can
be derived from the remaining three. For example, we can derive (vii) from (iii),
(v) and (vi). Rewriting (iii), (v) and (vi) with the notation k = py/px, we have

40 + 160k,
240 + 120k

X, +ky,

X, +ky,
and
x; + x, =280.
Adding the first two of these equations and using the third, we find that
280 + ky, + ky, =280 + 160k + 120k,
ie.
Y1 +y, =280,

which is precisely eq. (vii). Hence in determining the competitive values for the
five variables x,, x,, ¥, ¥, and k, we need use only the five equations (ii)—(vi).
The last of the supply and demand equations will be satisfied automatically if we
find a solution for the first five equations.??

To solve the five-equation system (ii)—(vi) we proceed as follows: first we
substitute from (ii) and (iv) into (iii), (v) and (vi), to eliminate x; and x,. This
gives.

2ky, =40 + 160k,
15 ky, = 240 + 120k
and
kyi + 3 ky, = 280.

*2 Qur climination of one of the demand-equals-supply equations is an example of the

application of Walras’s law.
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Next we eliminate y,, reducing our system to
15 ky, — 120k = 240
and
80k + 3 ky, = 260.
Finally, we eliminate £ and we find that
13y, — 120 240
80+5y, 260 °

Hence
y, = 1863
y1= 93
x, =140
x, =140
and

€ =1h =0, /p).

The competitive mechanism resolves the indeterminacy discussed in part (b).
Under competitive conditions, each man, i, organizes his purchases so that

oU; [aU; p,
ax; [ ay; Py

Thus (E2.16.1) is satisfied and the competitive equilibrium is Pareto optimal.
Compared with part (b), we have the additional information that consumers
must satisfy their budgets. This is sufficient to determine at which point on the
contract curve the equilibrium will occur.?3

Exercise 2.17. Additive utility functions

A popular assumption in empirical work is that the utility function is additive,
i.e. it can be written in the form

1 2
Uxyyex,)=U(x) + U (x2) + ... + U"(x,),
2> In a morc general example, it is possible that there are scveral competitive cquilibria.

Hence, even the adoption of competitive assumptions may not completely eliminate the
indeterminacy of the purc exchange model.
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where each of U', U?,...,U" is a strictly concave function of a single argument.
The log-linear utility function, (E2.3.3), is an example. Under the additivity
assumption, the symmetry condition (E2.6.2) can be replaced by the stronger
restriction

E.
e;; = —E;a (1 + —’), forall i#j, (E2.17.1)
w
where w is a scalar, independent of i and j. w is often referred to as the ‘Frisch
parameter’.

(a) Is an additive utility function likely to be an adequate description of
consumer preferences in a very detailed model where the commodity classifica-
tions include, for example, fruit, vegetables, meat, fish, cotton shirts, synthetic
shirts, etc.? Would the additivity assumption be more easily sustainable in an
aggregative model based on commodity classifications such as food, clothing,
etc.?

(b) Check that (E2.17.1) is in fact a more severe restriction than (E2.6.2),
i.e. check that (E2.17.1) implies (E2.6.2), but not vice versa.

(c¢) The derivation of (E2.17.1) is fairly time consuming. However, it illus-
trates a general method of translating restrictions on the utility function (in this
case the zeros in the Hessian) into empirically useful restrictions on the demand
elasticities. As a first step, prove that

-1 'yt -1 g1t -1 -1
A WH p)H_—H ppH | AP (E2.17.2)
p 0 pH'p p'H™! | —1

The relevance of this step will be apparent from (E2.6.1). Once you have estab-
lished (E2.17.2), you will be able to show that

oA 1
'a_y — —p—IF_l—p ) (E2.17-3)
ox; N
—ayl = (H™ P); a (E2.17.4)
and
ox; . on i,
5 = (H )ij)\_ "5): (H p)i(H p),->\
j
on . .
- — (H p),.x]. forall i and j, (E2.17.5)

ay
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where the notations (+); and (-)ij denote the jth and ijth components of the
bracketed vector and matrix.

Next, recognize that under the additivity assumption, / and H™' are diagonal
matrices. Now use (E2.17.4) and (E2.17.5) to obtain (E2.17.1).

(d) What is the interpretation of the Frisch parameter, w?

(e) Consider the utility function

n
V(x1,X3,..,X,) = iI_Il Vi(x;). (E2.17.3)

Would you expect restriction (E2.17.1) to be applicable? How about the inter-
pretation of «w, would it still be the same as in the additive case?

(f) Can you complete the following scheme under the assumption that the
consumer’s preferences are additive?

1 1 1
a1=§a a; =3, a3z =3
13 1
€11 = —3g ey =" €3 =" E, =5
1
e21=? 322-—-? 323—? E2=5
e3 =" ey =" €33 =" Ey =7

Answer. (a) Under additivity we are assuming that the consumer behaves as
if his marginal utility of good i is independent of his consumption of good j,
Jj #i. This assumption is hard to justify for a very detailed study. The consumer’s
marginal utility for cotton shirts is likely to depend on both the number of
cotton and synthetic shirts which he has. On the other hand, it may be accept-
able to assume that the marginal utility for ‘food’ is independent of quantities of
‘clothing’. Very intuitively, the additivity assumption rules out the possibility of
‘special’ substitution effects. It is not applicable when we have a situation in
which i and j are extremely close substitutes, but i and k are only weakly
substitutable.
(b) From (E2.17.1) we have

EioEiop
cx,.(ei]- +E,.aj) =—— I #],
and
Hence

o (e + Ejop) = ai(ey; + Eray),  for i#],
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and we have shown that (E2.17.1) implies the symmetry condition (E2.6.2). On
the other hand, the symmetry condition certainly does not imply (E2.17.1). In
E2.7 you generated a scheme of elasticities which satisfied (E2.6.2). A little
arithmetic will show that they do not satisfy (E2.17.1). For example, you will
find that

ay(en; +E,0z) E\Eyay0,

a (e +E a3) E\E;a a3

(c) One way to prove (E2.17.2) is by multiplying the bordered Hessian by
our proposed inverse and checking that the result is the identity matrix. A more
instructive method is as follows: let

H pl? A b
= ()
p 0 bt

where A4 is an n x n matrix, b is an n x 1 vector, and 7 is a scalar.

We have written (i) so that the partitioning in the inverse is the same as that
in the initial bordered Hessian. We have also used the symmetry of the bordered
Hessian. Notice that we have taken account of the fact that the (n + 1)th row
and (n + 1)th column of the inverse are the same.

From (i) we have

H p A b I 0
’ = : (ll)
p 0 b’ 7T 0 1
Our objective now is to manipulate (ii) so as to express 4, b and 7 in terms of H
and p. By multiplying out the left-hand side of (ii) we find that

HA +pb' =1, (iii)

Hb +p7=0, (iv)

p'A=0, v)

p'b=1. (vi)
We assume that A has an inverse so that (iii) can be solved for 4, i.e.

A=H™( - pb), (vii)

and (iv) can be solved for b, i.e.

b=-H"pr. (viii)
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Multiplying (viii) by p’ and using (vi), we obtain

=—1/(p'H" p).
Substitution back into (viii) yields
1
b=~ H™p,
p'H™p

and finally, substitution into (vii) gives

A=H"' - S H'pp'H™.

(Since H and H ™" are symmetric, (H ™' p)' = p'"H ™' .) Returning to (i) we see that

-1
H p ~ ( 1 ) (p'H—lp)H-l _H-lpp’H-l | H-lp
» 0 p'H™'p p'H™ o]

At this stage we can rewrite the matrix equation (E2.6.1) as

dx B 1 (p'H'p)H' ~H'pp'H™ | H'p|[\dp
~ PpH™p p'H™! |1 | |dy—(dp)x

—dA

If we set dy = 1 and dp = 0, we find that

1
—dA= - 5—
pH™p
and |
dx; = P'Hp H™'p),.

Hence

29 1

oy pHp
and

ox; )

— = (H'p), — .

% (H™ p), 5

Similarly, if we set dp =1 with dy and dp, =0, for all k;& j, we can derive
(E2.17.5). Notice that the i, jth element of the matrix H™'pp’'H™! is the zth
element of the vector H~'p multiplied by the jth element of the vector p’H™*
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(H-lpp'H—l )ij = (H_lp)i (H_lp)]'~
The time has now arrived for us to use the additivity assumption. Additivity
implies that
02U _
0x; 0x; -

0, forall i+#j.
Hence the Hessian, H, and its inverse, are diagonal, and for i #, the first term
on the right-hand side of (E2.17.5) is zero. Thus (E2.17.5) reduces to
0x; ) )Y
_— - -1 -1 o -1 . . .
apj =— 3y (H p)l-(H p)j>\ - 3y H p)ixja I[#]. (ix)

From (E2.17.4), we have

ox
(H'p), = (a—y")/(%) for all &,

and by substitution into (ix) we obtain

ax; ax; dxj [ A 0x; torall it
W (ax/ay) Ty o i )

Eq. (x) is translated into a relationship between elasticities by multiplying and
dividing by prices and quantities in the usual way:

] A B I ] g BN
;| xi W | x| W |x; ¥y | Ny|y

B |:ax7 y [X,']Pj

ayu Xi y ’
1.e.
E,E](XI
€ == — - E;q forall i+#j,
where
o\ y i
= - = . XI
w > (xi)

On rearranging, we obtain (E2.17.1).

(d) From (xi) we see that w can be interpreted as the elasticity of the
marginal utility of income with respect to income, i.e. it shows the percentage
effect on the marginal utility of income of a one percent increase in income.
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(e) Utility function (E2.17.3) becomes additive under a positive monotonic
transformation. Note that

InV=ZIn V'
l

Since the preferences described by the utility function, U, where
U=sInV=ZInV*
]

are precisely the same as those described by the initial utility function, V, the
demand responses to price and income movements will be unchanged by the
replacement of V by U. (E2.17.1) is valid when the utility function is U. It will
also be valid when the utility function is V.

With the multiplicative utility function V, w cannot be interpreted as the
elasticity of the marginal utility of income. However, that interpretation is valid
when the utility function is additive. Hence

o o(d In V/ay) y
oy dln V/oy ’
1.€. 3 (_1_ BK)
o= V ay y
ay 1 oV
vV oy

__2[1+ o@v/ay) y
oy v dy av/joy

We can conclude that with the multiplicative utility function (E2.17.3), w can
be interpreted as the difference between the elasticity of marginal utility with
respect to income and the elasticity of total utility with respect to income.

To summarize, if there exists F, a monotonically increasing function, such
that F(V) is additive, where V is the utility function, then restriction (E2.17.1)
is applicable. However, the standard interpretation (but not the numerical value)
of w depends on the utility function being additive.

(f) From the Engel aggregation, (E2.1.3), we find that

l—alEl —azEz

E; = =
Qa3

Next, we use the homogeneity restriction (E2.2.1) to write

€151 t€12 +t€13 = —-El.
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Under additivity, this last equation may be rewritten as
E, E,
eu—Elaz 1+ — —E1a3 1+ — =—E1.
w w

Now, by using the values for the o’s, E’s and e;; as shown in the table, we find
that

=—4.

From here we can use (E2.17.1) to generate the e; for all i % and the homo-
geneity restriction to fill in the diagonal terms e,, and es; . The completed table
is as follows:

1 1 1
o« =3, az =3, a3 =3
13 7 4 1
€11 =—28 €12 = —28 €13 = — 33 El=§
7 13 4 1
€21 =— 38 €22 = —28 €23 = —323 Ey =3
28 28 40
€31 = —33 €32 = —23 €33 = —33 E; =2

On the basis of knowing the budget shares and two of the expenditure
elasticities, plus one price elasticity, we were able to deduce the other nine
elasticities. In general, we have n* + n price and income elasticities. Under the
assumption that the utility function is additive, we have

1+n+(@n-1)—1)=n?

restrictions: one restriction for the Engel aggregation, n restrictions for homo-
geneity and n(n-1) — 1 restrictions for additivity. Notice that (E2.17.1) deter-
mines the n(n-1) cross-elasticities, but introduces one new elasticity w. With
n =3, the additivity model provides 1+ 3 + 5 =9 restrictions applying to 12
elasticities. With n = 20, we have 400 restrictions applying to 420 elasticities.



