
Chapter 3
Modelling Area Data

Abstract Exploratory spatial data analysis is often a preliminary step to more
formal modelling approaches that seek to establish relationships between the
observations of a variable and the observations of other variables, recorded for each
areal unit. The focus in this chapter is on spatial regression models in a simple cross-
sectional setting, leaving out of consideration the analysis of panel data. We,
moreover, assume that the data concerned can be taken to be approximately normally
distributed. This assumption is—to varying degrees—involved in most of the spatial
regression techniques that we will consider. Note that the assumption of normality is
not tenable if the variable of interest is a count or a proportion. In these cases we
would expect models for such data to involve probability distributions such as the
Poisson or binomial. The chapter consists offive sections, starting with a treatment of
the specification of spatial dependence in a regression model. Next, specification
tests are considered to detect the presence of spatial dependence. This is followed by
a review of the spatial Durbin model (SDM) that nests many of the models widely
used in the literature, and by a discussion of spatial regression model estimation
based on the maximum likelihood (ML) principle. The chapter closes with some
remarks on model parameter interpretation, an issue that had been largely neglected
so far. Readers interested in implementing the models, methods and techniques
discussed in this chapter find useful MATLAB code which is publicly available at
spatial-econometrics.com, LeSage’s spatial econometrics toolbox (downloadable
from http://www.spatial-econometrics.com/), see Liu and LeSage (2010) Journal of
Geographical Systems 12(1):69–87 for a brief description. Another useful open
software is the spdep package of the R project (downloadable from http://cran.
r-project.org).
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3.1 Spatial Regression Models

Starting point is the linear regression model, where for each observation (area) i,
with i ¼ 1; . . .; n; the following relationship holds

yi ¼
XQ

q¼1

Xiqbq þ ei ð3:1Þ

where yi is an observation on the dependent variable, Xiq is an observation on an
explanatory variable, with q ¼ 1; . . .;Q (including a constant, or one), bq the
matching regression coefficient, and ei the error term.

In the classical regression specification, the error terms have mean zero, that is,
E½ei� ¼ 0 for all i, and they are identically and independently distributed (iid).
Hence, their variance is constant, var½ei� ¼ r2 for all i, and they are uncorrelated,
E½ei ej� ¼ E½ei�E½ej� ¼ 0 for i 6¼ j.

In matrix notation this regression model may be written as

y ¼ Xbþ e ð3:2Þ

where the n observations on the dependent variable are stacked in an n-by-1 vector y,
the observations on the explanatory variables in an n-by-Q matrix X with the
associated Q-by-1 parameter vector b, and the random error terms in an n-by-1
vector e. E½e� ¼ 0 where 0 is an n-by-1 vector of zeros, and E½e e0� ¼ r2I with
I denoting the n-by-n identity matrix.

The assumption of independent observations greatly simplifies the model, but in
the context of area data this simplification is very unlikely to be appropriate,
because of the possibility of spatial dependence between the error terms. If the
regressors, residuals or the dependent variable are spatially dependent, the model
suffers from a misspecification problem and the results of the model are biased or
inconsistent.

Spatial dependence reflects a situation where values observed in one areal unit,
depend on the values of neighbouring observations at near-by areas. Spatial
dependence may be introduced into a model of type (3.2) in two major ways: one
is referred to as spatial lag dependence, and the other as spatial error dependence
(Anselin 1988b). The former pertains to spatial correlation in the dependent var-
iable, while the latter refers to the error term. Hence, it has become convenient to
distinguish between spatial lag and spatial error model specifications.

Spatial dependence can also be introduced in the regressor variables, leading to
so-called cross-regressive models (Florax and Folmer 1992), also termed spatially
lagged X (or SLX) models (LeSage and Pace 2009). But—in contrast to the spatial
lag and spatial error models—they do not require the application of special esti-
mation procedures. Thus, they will not be further considered in this chapter.

Spatial lag models account for spatial correlation (dependence) in the depen-
dent variable. Such specifications are typically motivated by theoretical arguments
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that emphasise the importance of neighbourhood effects, or spatial externalities
that cross the borders of the areal units and show up in the dependent variable. This
kind of spatial autocorrelation is substantive on the ground that it has a meaningful
interpretation.

In contrast, spatial error models account for spatial dependence in the error
term. Spatial error dependence may arise, for example, from unobservable latent
variables that are spatially correlated. It may also arise from area boundaries that
do not accurately reflect neighbourhoods which give rise to the variables collected
for the analysis. Spatial autocorrelation arising for these reasons is considered to
be nuisance.

Spatial Lag Models Spatial lag models are extensions of regression models of
type (3.1). They allow observations of the dependent variable y in area i ði ¼
1; . . .; nÞ to depend on observations in neighbouring areas j 6¼ i: The basic spatial
lag model, the so-called first order spatial autoregressive (SAR) model, takes the
form

yi ¼ q
Xn

j¼1

Wijyj þ
XQ

q¼1

Xiqbq þ ei ð3:3Þ

where the error term, ei, is iid. Wijis the (i, j)th element of the n-by-n spatial
weights matrix W (see Sect. 2.2). Recall that W has non-zero elements Wij in each
row i for those columns j that are neighbours of area i. By convention, Wii ¼ 0 for
all i. All these values are exogenous. We assume that W is row-stochastic so that
the matrix W has a principal eigenvalue of one. The term row-stochastic refers to a
non-negative matrix having row sums normalised so they equal one.

The scalar q in Eq. (3.3) is a parameter (to be estimated) that will determine the
strength of the spatial autoregressive relation between yi and RjWij yj; a linear
combination of spatially related observations based on non-zero elements in the ith
row of W. The domain of q is defined by the interval ðw�1

min;w
�1
maxÞ, where wmin and

wmax represent the minimum and maximum eigenvalues of the matrix W. For the
case of a row-normalised weights matrix, �1�wmin\0, wmax ¼ 1 so that q ranges
from negative values to unity. In cases where positive spatial dependence is almost
certain, restriction of q to the [0, 1) interval simplifies computation. It should be
clear that if q ¼ 0, we have a conventional regression model of type (3.1) so that
interest focuses on the statistical significance of the coefficient estimate for q.

In matrix notation, model (3.3) may be written as

y ¼ qWyþ Xbþ e: ð3:4Þ

With a row-standardised spatial weights matrix W (that is, the weights are
standardised such that Rj Wij ¼ 1 for all i), this amounts to including the average of
the neighbours as an additional variable into the regression specification. This
variable, Wy, is referred to as a spatially lagged dependent variable. For example,
in a model for growth rates of European regions, this would add the average of the
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growth rates in the neighbouring locations as an explanatory variable.The model
given by Eq. (3.4) is a structural model. Its reduced form, that is, the solution of
the model for y is

y ¼ ðI � qWÞ�1ðXbþ eÞ ð3:5Þ

so that the expected value of y is

E½y� ¼ ðI � qWÞ�1Xb ð3:6Þ

since the errors all have mean zero. The inverse matrix term is called spatial
multiplier, and indicates that the expected value of each observation yi will depend
on a linear combination of X-values taken by neighbouring observations, scaled by
the dependence parameter q.

Spatial Error Models Another form of spatial dependence occurs when the
dependence works through the error process, in that the errors from different areas
may display spatial covariance. The most common specification is a spatial
autoregressive process of first order, as given by

ei ¼ k
Xn

j¼1

Wijej þ ui ð3:7Þ

where k is the autoregressive parameter, and ui a random error term, typically
assumed to be iid. In matrix notation Eq. (3.7) may be reformulated as

e ¼ kWeþ u: ð3:8Þ

Assuming jkj\1 and solving Eq. (3.8) for e yields

e ¼ ðI � kWÞ�1u: ð3:9Þ

Inserting Eq. (3.9) into the standard regression model (3.2) yields the spatial error
model

y ¼ Xbþ ðI � kWÞ�1u ð3:10Þ

with E½uu0� ¼ r2I so that the complete error variance–covariance matrix follows as

E½e e0� ¼ r2ðI � kWÞ�1ðI � kW 0Þ�1: ð3:11Þ

The spatial error model (SEM) may be viewed as a combination of a standard
regression model with a spatial autoregressive model in the error term e, and hence has
an expectation equal to that of the standard regression model. In large samples, point
estimates for the parameters b from the SEM model and conventional regression will
be the same, but in small samples there may be an efficiency gain from correctly
modelling spatial dependence in the error terms. Note that in contrast spatial lag
models that contain spatial lag terms Wy on the right-hand side of the equation
generate expectations that differ from those of the standard regression model.
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Higher Order Models In addition to the basic spatial lag and spatial error models
described above, higher order models can be specified as well, by including two or
more weight matrices. Using multiple weight matrices provides a straightforward
generalisation of the SAR and SEM models. For example, Anselin (1988b,
pp. 34–36) uses two spatial weights matrices W1 and W2 to combine the basic
spatial lag and error models so that

y ¼ qW1yþ Xbþ e ð3:12Þ

e ¼ kW2eþ u ð3:13Þ

u�Nð0; r2
uIÞ ð3:14Þ

where W1 and W2 represent n-by-n non-negative spatial weights matrices (not
necessarily distinct from each other) with zeros on the main diagonal. The
parameters to be estimated are b; q; k and r2

u. Setting the parameter q ¼ 0 elimi-
nates the spatially lagged variable W1 y; generating the basic spatial error model
given by Eq. (3.10). The case where k ¼ 0 eliminates the spatially lagged dis-
turbance term yields the basic spatial lag model given by Eq. (3.4).

3.2 Tests for Spatial Dependence

The standard approach towards detecting the presence of spatial dependence in a
regression model is to apply diagnostic tests. The best known test statistic against
spatial autocorrelation is Moran’s I statistic for spatial autocorrelation applied to
the regression residuals (see Cliff and Ord 1972, 1973, see also Sect. 2.3):

I ¼ n

W0

e0We

e0e
ð3:15Þ

W0 ¼
Xn

i¼1

Xn

j 6¼i

Wij ð3:16Þ

where e is an n-by-1 vector of OLS residuals y� Xb̂, e0 e is the sum of squared
residuals, and W0, equal to the sum of Wij over i and j, is a normalising factor. Note
that the correcting factor n=W0 is not needed if the spatial weights matrix W is
row-standardised. In practice, inference—by means of Moran’s I test—is based on
a normal approximation, using a standardised value, obtained by subtracting the
mean under the null and dividing by the square root of the variance.

As already pointed out in Sect. 2.3, care needs to be taken when applying this
formal test of spatial dependence to residuals. The problem arises because if
Q regression coefficients have been estimated, then the observed residuals are
automatically subject to Q linear constraints. That is, the observed residuals will be
correlated to some extent, and hence the testing procedure for Moran’s I will not
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be valid. If Q� n, however, then it might be justified in ignoring this. If not, then
strictly one should use adjustments to the mean and variance of the approximate
sampling distribution of I.

An alternative, more focused test for spatial error dependence is based on the
Lagrange multiplier (LM) principle, suggested by Burridge (1980). It is similar in
expression to Moran’s I and is also computed from the OLS residuals. But a
normalisation factor in terms of matrix traces is needed to achieve an asymptotic
chi-square distribution (with one degree of freedom) under the null hypothesis of
no spatial dependence ðH0 : k ¼ 0Þ. The LM error statistic is given by

LMðerrorÞ ¼ e0We

e0e n�1

� �2 1
tr½W 0W þW2� ð3:17Þ

where tr stands for the trace operator (the sum of the diagonal elements of a
matrix), and ðe0e n�1Þ represents the error variance. Except for the scaling factor

tr½W 0W þW2��1, this statistic is essentially the square of Moran’s I.
A test for substantive spatial dependence (that is, an omitted spatial lag) can

also be based on the Lagrange multiplier principle (see Anselin 1988b). Its form is
slightly more complex, but again requires only the results of an OLS regression.
The test takes the form

LMðlagÞ ¼ e0Wy

e0e n�1

� �2 1
H

ð3:18Þ

with

H ¼ fðW X b̂Þ0½I � XðX0XÞ�1X0�ðW X b̂Þr̂�2g þ trðW 0W þW2Þ ð3:19Þ

where b̂ and r̂2 denote OLS estimates, Wy is the spatial lag and WXb̂ is a spatial

lag for the predicted values Xb̂, and ½I � XðX0 XÞ�1X0� is a familiar projection
matrix. The LM(lag) test is also distributed as chi-square with one degree of
freedom under the null hypothesis of no spatial dependence ðH0 : q ¼ 0Þ:

Specification Search For the simple case of choosing between a spatial lag or
spatial error alternative, there is considerable evidence that the proper alternative is
most likely the one with the largest significant LM test statistic value (Anselin and
Rey 1991). This was later refined in light of the robust form of the two LM statistics
in Anselin et al. (1996) accounting for the fact that in the presence of spatial lag
(error) dependence, the LM test against error (lag) dependence becomes biased.

Florax and Folmer (1992) suggest a sequential testing procedure to discern whether
a model based on the restrictions q ¼ 0 versus k ¼ 0, versus both q and k different
from zero should be selected. Of course, this approach complicates inference con-
cerning the parameters of the final model specification due to the pre-test issue.

Florax et al. (2003) consider Hendry’s ‘‘general to specific approach’’ to model
specification versus a forward stepwise strategy. While the ‘‘general to specific’’
approach tests sequential restrictions placed on the most general model
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(3.12)–(3.14) that includes both spatial lag and spatial error dependence, the
stepwise strategy considers sequential expansions of the model. Starting with
regression model (3.2), expansion of the model proceeds to add spatial lag terms,
conditional upon the results of misspecification tests. They conclude that the
Hendry approach is inferior in its ability to detect that true data generating process.

3.3 The Spatial Durbin Model

The spatial Durbin model (SDM) is the SAR model (3.4) augmented by spatially
lagged explanatory variables

y ¼ qWyþ XbþW �Xcþ e ð3:20Þ

where �X is the n-by-(Q–1) non-constant explanatory variable matrix. The model
may be rewritten in reduced form as

y ¼ ðI � qWÞ�1ðXbþW �Xcþ eÞ ð3:21Þ

with

e ¼ Nð0; r2IÞ ð3:22Þ

where c is a (Q–1)-by-1 vector of parameters that measure the marginal impact of
the explanatory variables from neighbouring observations (areas) on the dependent
variable y. Multiplying �X by W (that is, W �XÞ produces spatially lagged explanatory
variables that reflect an average of neighbouring observations. If W is sparse
(having a large proportion of zeros), operations such as W �X require little time.

By defining Z ¼ ½X W �X� and d ¼ ½b c�0 this model can be written as a SAR
model leading to

y ¼ qWyþ Zdþ e ð3:23Þ

or

y ¼ ðI � qWÞ�1Zdþ ðI � qWÞ�1e: ð3:24Þ

One motivation for use of the SDM model rests on the plausibility of a con-
junction of two circumstances that seem likely to arise in applied spatial regression
modelling of area data samples. One of these is spatial dependence in the dis-
turbances of an OLS regression model. The second circumstance is the existence
of an omitted explanatory variable that exhibits non-zero covariance with a vari-
able included in the model, and omitted variables are likely when dealing with
areal data samples (LeSage and Fischer 2008).

In addition, the spatial Durbin model occupies an interesting position in the
field of spatial regression analysis because it nests many of the models widely used
in the literature (see LeSage and Pace 2009):
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(i) imposing the restriction c ¼ 0 leads to the spatial autoregressive model (3.4)
that includes a spatial lag of the dependent variable, but excludes the influence
of the spatially lagged explanatory variables,

(ii) the so-called common factor parameter restriction c ¼ �q �b yields the spatial
error regression model specification (3.10) which assumes that externalities
across areas are mostly a nuisance spatial dependence problem caused by the
spatial transmission of random shocks (Note that �b denotes the (Q–1)-by-1
vector of parameters that measure the marginal impact of the non-constant
explanatory variables on the dependent variable. b ¼ ðb0;

�bÞ0 where b0 is the
constant term parameter),

(iii) the restriction q ¼ 0 results in a least squares spatially lagged X regression
model that assumes independence between observations of the dependent
variable, but includes characteristics from neighbouring areas, in the form of
spatially lagged explanatory variables,

(iv) finally, imposing the restriction q ¼ 0 and c ¼ 0 yields the standard least
squares regression model given by Eq. (3.2).

Hence, the SDM model suggests a general-to-simple model selection rule.
Testing, whether the restrictions hold or not, implies not much effort. Of particular
importance are common factor tests that discriminate between the unrestricted
SDM and the SEM specifications, or in other words between substantive and
residual dependence in the analysis. The likelihood ratio test proposed by Burridge
(1980) is the most popular test in this context (see LeSage and Pace (2009) for
details, Mur and Angulo (2006) for alternative tests and a comparison based on
Monte Carlo evidence).

Finally, it should be noted that the spatial Durbin model (3.20) can be gener-
alised to

y ¼ qW1yþ XbþW1 �Xcþ e ð3:25Þ

e ¼ kW2eþ u ð3:26Þ

u�Nð0; r2
uIÞ; ð3:27Þ

where the n-by-n spatial weights matrices W1 and W2 can be the same or distinct.
For details on this model generalisation see LeSage and Pace (2009, pp. 52–54).

3.4 Estimation of Spatial Regression Models

Estimation of spatial regression models is typically carried out by means of a
maximum likelihood (ML) approach, in which the probability of the joint distri-
bution (likelihood) of all observations is maximised with respect to a number of
relevant parameters. Maximum likelihood estimation has desirable asymptotic
theoretical properties such as consistency, efficiency and asymptotic normality,
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and is also thought to be robust for small departures from the normality assumption
(LeSage and Pace 2004, pp. 10–11).

The estimation problems associated with spatial regression models are different
for the spatial lag and the spatial error cases. We start the discussion by focusing
on the SAR (and SDM) model presented in Eq. (3.23).

Given e�Nð0; r2IÞ, the log (more precisely the logarithm naturalis) of the
likelihood for the SAR model given by Eq. (3.23) takes the form in Eq. (3.28)
(Anselin 1988b, p. 63)

ln Lðq; d; r2Þ ¼ � n

2
ln 2p� n

2
ln r2 þ ln jAj

� 1
2r2
ðAy� ZdÞ0ðAy� ZdÞ ð3:28Þ

where n is the number of observations, j:j stands for the determinant of a matrix, and
for notational simplicity, the expression I � qW is replaced by A. The parameters
with respect to which this likelihood has to be maximised are q; d and r2.

The minimisation of the last term in Eq. (3.28) corresponds to ordinary least
squares (OLS), but since this ignores the log-Jacobian term ln jI � qW j, OLS is not
a consistent estimator in this model. There is no satisfactory two-step procedure
and estimators for the parameters have to be obtained from an explicit maximi-
sation of the likelihood (Anselin 2003b).

But it turns out that the estimates for the regressive coefficients d; conditional
upon the value for q, can be found as

d ¼ dO � qdL ð3:29Þ

where dO and dL are OLS regression coefficients in a regression of Z on y and Wy,
respectively. In a similar way the error variance r2 can be estimated as

r2 ¼ ðeO � qeLÞ0ðeO � qeLÞ
1
n

ð3:30Þ

where eO and eL are the residual vectors in the regressions for dO and dL. That is,

eO ¼ y� ZdO and eL ¼ Wy� ZdL, where dO ¼ ðZ 0ZÞ�1Z 0y and dL ¼ ðZ 0ZÞ�1

Z 0Wy:
Substitution of (3.29) and (3.30) into the log-likelihood function (3.28) gives

the scalar concentrated log-likelihood function value

ln LconðqÞ ¼ jþ ln jI � qW j � n

2
ln ðeO � qeLÞ0ðeO � qeLÞ
� �

ð3:31Þ

where j is a constant that does not depend on q. The motivation for optimising the
concentrated log-likelihood is that this simplifies the optimising problem by
reducing a multivariate optimisation problem to a univariate one. Maximising the
concentrated log-likelihood function with respect to q yields q� that is equal to the
maximum likelihood estimate ðq̂ML ¼ q�Þ. Note that it is well-known that maxi-
mum likelihood often has a downward bias in estimation of q in small samples.
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The computationally difficult aspect of this optimisation problem for models with a
large number of observations is the need to compute the log-determinant of the n-
by-n matrix ðI � qWÞ: In response to this computational challenge there are at
least two strategies. First, the use of alternative estimators can solve this problem.
Examples include the instrumental variable (IV) approach (Anselin 1988b,
pp. 81–90) and the instrumental variable (IV)/generalised moments (GM)
approach (Kelejian and Prucha 1998, 1999). These alternative estimation
methods, however, suffer from several drawbacks. One is that they can produce
q-estimates that fall outside the interval defined by the eigenvalue bounds arising
from the spatial weights matrix W. Moreover, inferential procedures for these
methods can be sensitive to implementation issues such as the interaction between
the choice of instruments and model specification which are not always obvious to
the practitioner (LeSage and Pace 2010).

A second strategy is to directly attack the computational difficulties confronting
ML estimation. The Taylor series approach of Martin (1993), the eigenvalue based
approach of Griffith and Sone (1995), the direct sparse matrix approach of Pace
and Barry (1997), the characteristic polynomial approach of Smirnov and Anselin
(2001), and the sampling approach of Pace and LeSage (2009) are examples of this
strategy. A review of most of the approximations to the log-determinant can be
found in LeSage and Pace (LeSage and Pace 2009, Chap. 4). Improvements in
computing technology in combination with these approaches suggest that very
large problems can be handled today, using the ML estimation approach.

Inference regarding parameters for the models is frequently based on estimates
of the variance–covariance matrix. In problems where the sample size is small, an
asymptotic variance matrix based on the Fisher information matrix for parameters
g ¼ ðq; d; r2Þ can be used to provide measures of dispersion for these parameters.
Anselin (1988b) provides the analytical expressions needed to construct this
information matrix, but evaluating these expressions may be computationally
difficult when dealing with large scale problems involving thousands of observa-
tions (LeSage and Pace 2004, p. 13).

Let us turn next to the spatial error model presented in Eq. (3.10) that represents
another member of the family of regression models that can be derived from
Eqs. (3.12)–(3.14). Assuming normality for the error terms, and using the concept
of a Jacobian for this model as well, the log-likelihood for the SEM model can be
obtained as

ln Lðk; b; r2Þ ¼ � n

2
ln 2p� n

2
ln r2 þ ln jI � kW j

� 1
2r2
ðy� XbÞ0ðI � kWÞ0ðI � kWÞðy� XbÞ: ð3:32Þ

A closer inspection of the last term in Eq. (3.32) reveals that—conditional
upon a given k—a maximisation of the log-likelihood is equivalent to the mini-
misation of the sum of squared residuals in a regression of a spatially filtered
dependent variable y� ¼ y� kWy on a set of spatially filtered explanatory
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variables X� ¼ X � kWX: The first order conditions for b̂ML indeed generate the
familiar generalised least squares estimator (Anselin 2003b)

b̂ML ¼ ½X0ðI � kWÞ0ðI � kWÞX��1X0ðI � kWÞ0ðI � kWÞ y ð3:33Þ

and, similarly, the ML estimator for r2 as

r̂2
ML ¼ ðe� kWeÞ0ðe� kWeÞ 1

n
ð3:34Þ

where e ¼ y� Xb̂ML: A consistent estimate for k cannot be obtained from a simple
auxiliary regression, but the first order conditions must be solved explicitly by
numerical means. For technical details, see Anselin (1988b, Chap. 6), or LeSage
and Pace (2009, Chap. 3). As for the spatial lag model, asymptotic inference can
be based on the inverse of the information matrix (see Anselin 1988b, Chap. 6, for
details).

3.5 Model Parameter Interpretation

Simultaneous feedback is a feature of spatial regression models that comes from
dependence relations embodied in the spatial lag term Wy. This leads to feedback
effects from changes in explanatory variables in an area that neighbours i, say area
j, that will impact the dependent variable for observation (area) i. Consequently,
interpretation of parameters of spatial regression models that contain a spatial lag
Wy becomes more complicated (see, for example, Kim et al. 2003; Anselin and
LeGallo 2006; Kelejian et al. 2006; LeSage and Fischer 2008).

To see how these feedback effects work, we follow LeSage and Pace (2010) and
consider the data generating process associated with the spatial lag model, shown
in Eq. (3.35) to which we—assuming that q in absolute value is less than 1 and
W is row-stochastic—have applied the well known infinite series expansion in
Eq. (3.36) to express the inverse of ðI � qWÞ

y ¼ ðI � qWÞ�1Xbþ ðI � qWÞ�1e ð3:35Þ

ðI � qWÞ�1 ¼ I þ qW þ q2W2 þ q3W3 þ . . . ð3:36Þ

y ¼ Xbþ qWXbþ q2W2Xbþ q3W3Xbþ . . .

þ eþ qWeþ q2W2eþ q3W3eþ . . . ð3:37Þ

The model statement in Eq. (3.37) can be interpreted as indicating that the
expected value of each observation yi will depend on the mean plus a linear
combination of values taken by neighbouring observations (areal units), scaled by
the dependence parameters q; q2; q3; . . .
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Consider the powers of the row-stochastic spatial weights matrix W (that is,
W2;W3; . . .) which appear in Eq. (3.37) where we assume that the rows of W are
constructed to represent first order contiguous neighbours. Then the matrix W2

will reflect second order contiguous neighbours, those that are neighbours to the
first order neighbours. Since the neighbour of the neighbour (second order
neighbour) to an observation i includes observation i itself, W2 has positive ele-
ments on the main diagonal, when each observation has at least one neighbour.
That is, higher order spatial lags can lead to a connectivity relation for an
observation i such that W2Xb and W2e will extract observations from the vectors
Xb and e that point back to the observation i itself. This is in contrast to the
conventional independence relation in ordinary least squares regressions where the
Gauss-Markov assumptions rule out dependence of ei on other observations
ðj 6¼ iÞ, by assuming zero covariance between observations i and j in the data
generating process (LeSage and Pace 2010).

In standard least squares regression models of type (3.2) where the dependent
variable vector contains independent observations, changes in observation i on the
qth (non-constant) explanatory variable, which we denote by �Xiq, only influence
observation yi, so that the parameters have a straightforward interpretation as
partial derivatives of the dependent variable with respect to the explanatory
variable

oyi

oXjq
¼

bq for i ¼ j and q ¼ 1; . . .;Q� 1

0 for j 6¼ i and q ¼ 1; . . .;Q� 1:

(
ð3:38Þ

The SAR model (and the spatial Durbin model) allows this type of change
to influence yi as well as other observations yj with j 6¼ i: This type of impact
arises due to the interdependence or connectivity between observations in the
model. To see how this works, consider the spatial lag model expressed as
shown in Eq. (3.39)

y ¼
XQ

q¼1

SqðWÞ�Xq þ VðWÞinb0 þ VðWÞe ð3:39Þ

SqðWÞ ¼ VðWÞðIbqÞ ð3:40Þ

VðWÞ ¼ ðI � qWÞ�1 ð3:41Þ

where b0 is the constant term parameter on in, the n-by-1 vector of ones. Note that
in the case of the SDM model SqðWÞ ¼ VðWÞ ðIbq þWcqÞ. For more details see
LeSage and Pace (2009, 34 pp.).

To illustrate the role of SqðWÞ, we rewrite the expansion of the data generating
process in Eq. (3.39) as shown in Eq. (3.42)
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ð3:42Þ

To make the role of SqðWÞ clear, consider the determination of a single
dependent variable observation yi

yi ¼
XQ

q¼1

½SqðWÞi1 �X1q þ SqðWÞi2 �X2q þ � � � þ SqðWÞin �Xnq�

þ VðWÞiinb0 þ VðWÞi e ð3:43Þ

where SqðWÞij denotes the (i, j)th element of the matrix SqðWÞ, and VðWÞi the ith
row of VðWÞ: It follows from Eq. (3.43) that—unlike to the case of the inde-
pendent regression model—the derivative of yi with respect to �Xjq ð j 6¼ iÞ is
potentially non-zero, taking a value determined by the (i, j)th element of the matrix
SqðWÞ, see LeSage and Pace (2010):

oyi

oXjq
¼ SqðWÞij: ð3:44Þ

In contrast to the least squares case, the derivative of yi with respect to �Xiq

usually does not equal bq, but results in an expression SqðWÞii that measures the
impact on the dependent observation i from a change in �Xiq

oyi

oXiq
¼ SqðWÞii: ð3:45Þ

Hence, a change to an explanatory variable in a single area (observation) can affect
the dependent variable in other areas (observations). This is a logical consequence
of the simultaneous spatial dependence structure in the spatial lag model. A change
in the characteristics of neighbouring areal units can set in motion changes in the
dependent variable that will impact the dependent variable in neighbouring areas.
These impacts will diffuse through the system of areas.

Since the partial derivatives take the form of an n-by-n matrix and since there
are Q–1 non-constant explanatory variables, this results in ðQ� 1Þn2 partial
derivatives which provides an overwhelming amount of information. LeSage and
Pace (2009, pp. 36–37) suggest summarising these partial derivatives. In partic-
ular, they propose averaging all the column or row sums of SqðWÞ to arrive at the
average total impact or effect, averaging the main diagonal elements of this matrix
to arrive at the average direct impact or effect, and averaging the off-diagonal
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elements of SqðWÞ to arrive at the average indirect impact or effect. This latter
summary measure reflects what are commonly thought of as spatial spillovers, or
impacts falling on areas other than the own-area.

One applied illustration that uses these scalar summary impact estimates can be
found in Fischer et al. (2009b). The application considers the direct, indirect and
total impacts of changes in human capital on labour productivity levels in Euro-
pean regions. A number of other applications can be found in LeSage and Pace
(2009) in a wide variety of application contexts.

For inference regarding the significance of these impacts, one needs to deter-
mine their empirical or theoretical distributions. Since the impacts reflect a non-
linear combination of the parameters q and �b in the case of the SAR model,
working with the theoretical distribution is not very convenient. Given the model
estimates as well as the associated variance–covariance matrix along with the
knowledge that the ML estimates are (asymptotically) normally distributed, one
can simulate the parameters q and �b (and c in the case of the SDM model). These
empirically simulated magnitudes can be used in the expressions for the scalar
summary measures to generate an empirical distribution of the scalar impact
measures (LeSage and Pace 2009, 2010).

An illustration of a simulation approach to determining measures of dispersion
for these scalar summary impact estimates can be found in Fischer et al. (2009b).
Another illustration is given in LeSage and Fischer (2008) in the context of
Bayesian model averaging methods.
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