
Chapter 1
Introduction

Abstract In this chapter we give an introduction to spatial data analysis, and
distinguish it from other forms of data analysis. By spatial data we mean data that
contain locational as well as attribute information. We focus on two broad types of
spatial data: area data and origin–destination flow data. Area data relate to a
situation where the variable of interest—at least as our book is concerned—does
not vary continuously, but has values only within a fixed set of areas or zones
covering the study area. These fixed sites may either constitute a regular lattice
(such as pixels in remote sensing) or they may consist of irregular areal units (such
as, for example, census tracts). Origin–destination flow (also called spatial inter-
action) data are related instead to pairs of points, or pairs of areas in geographic
space. Such data—that represent flows of people, commodities, capital, informa-
tion or knowledge, from a set of origins to a set of destinations—are relevant in
studies of transport planning, population migration, journey-to work, shopping
behaviour, freight flows, and the transmission of information and knowledge
across space. We consider the issue of spatial autocorrelation in the data, rendering
conventional statistical analysis unsafe and requiring spatial analytical tools.
This issue refers to situations where the observations are non-independent over
space. And we conclude with a brief discussion of some practical problems which
confront the spatial analyst.

Keywords Spatial data � Types of spatial data � Spatial data matrix � Area data �
(Origin–destination) Flow data � Spatial autocorrelation � Tyranny of spatial data

1.1 Data and Spatial Data Analysis

Data consist of numbers, or symbols that are in some sense neutral and—in
contrast to information—almost context-free. Raw geographical facts, such as the
temperature at a specific time and location, are examples of data. Following
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Longley et al. (2001, p. 64) we can view spatial data as built up from atomic elements
or facts about the geographic world. At its most primitive, an atom of spatial data
(strictly, a datum) links a geographic location (place), often a time, and some
descriptive property or attribute of the entity with each other. For example, consider
the statement ‘‘The temperature at 2 pm on December 24, 2010 at latitude 48�150

North, longitude 16�210 28 s East, was 6.7�C’’. It ties location and time to the
property or attribute of atmospheric temperature. Hence, we can say that spatial
(geographic) data link place (location), time and an attribute (here: temperature).

Attributes come in many forms. Some are physical or environmental in nature,
while others are social or economic. Some simply identify a location such as postal
addresses or parcel identifiers used for recording land ownership. Other attributes
measure something at a location (examples include atmospheric temperature and
income), while others classify into categories such as, for example, land use
classes that differentiate between agriculture, residential land and industry.

While time is optional in spatial data analysis, geographic location is essential
and distinguishes spatial data analysis from other forms of data analysis that are
said to be non-spatial or aspatial. If we would deal with attributes alone, ignoring
the spatial relationships between sample locations, we could not claim of doing
spatial data analysis, even though the observational units may themselves be
spatially defined. Even if attribute data would be of fundamental importance,
divorced from their spatial context, they lose value and meaning (Bailey and
Gatrell 1995, p. 20). In order to undertake spatial data analysis, we require—as a
minimum—information for both locations and attributes, regardless, of how the
attributes are measured.

Spatial data analysis requires an underlying spatial framework on which to
locate the spatial phenomena under study. Longley et al. (2001) and others have
drawn a distinction between two fundamental ways of representing geography: a
discrete and a continuous view of spatial phenomena. In other words, a distinction
is made between a conception of space as something filled with ‘‘discrete objects’’,
and a view of space as covered with essentially ‘‘continuous surfaces’’. The former
has been labelled an object or entity view of space, the latter a field view.

In the object view the sorts of spatial phenomena being analysed are identified
by their dimensionality. Objects that occupy area are called two-dimensional, and
are generally referred to as areas. Other objects are more like one-dimensional
lines, including rivers, railways, or roads, and are represented as one-dimensional
objects and generally referred to as lines. Other objects are more like zero-
dimensional points, such as individual plants, people, buildings, the epicentres of
earthquakes, and so on, and are referred to as points (Longley et al. 2001,
pp. 67–68; Haining 2003, pp. 44–46). Note that surface or volume objects—not
considered in this book—have length, breadth, and depth, and thus are three-
dimensional. They are used to represent natural objects such as river basins or
artificial phenomena such as the population potential of shopping centres.

Of course, how appropriate this is depends upon the spatial scale (level of detail
at which we seek to represent ‘‘reality’’) of study. If we are looking at the dis-
tribution of urban settlements at a national scale, it is reasonable to treat them as a
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distribution of points. At the scale of a smaller region, for example, it becomes less
sensitive. Phenomena such as roads can be treated as lines as mentioned above.
But there is again scale dependence. On large scale maps of urban areas roads have
a width, and this may be important when interest is on car navigation issues, for
example. Lines also mark the boundaries of areas. By areas we generally under-
stand those entities which are administratively or legally defined, such as coun-
tries, districts, census zones, and so on, but also ‘‘natural areas’’ such as soil or
vegetation zones on a map.

In a field view the emphasis is on the continuity of spatial phenomena, and the
geographic world is described by a finite number of variables, each measurable at
any point of the earth’s surface, and changing in value across the surface (Haining
2003, pp. 44–45). If we think of phenomena in the natural environment such as
temperature, soil characteristics, and so on, then such variables can be observed
anywhere on the earth’s surface (Longley et al. 2001, pp. 68–71). Of course, in
practice such variables are discretised. Temperature, for example, is sampled at a
set of sites and represented as a collection of lines (so-called isotherms). Soil
characteristics might be also sampled at a set of discrete locations and represented
as a continuously varying field. In all such cases, an attempt is made to represent
underlying continuity from discrete sampling (Bailey and Gatrell 1995, p. 19).

1.2 Types of Spatial Data

In describing the nature of spatial data it is important to distinguish between the
discreteness or continuity of the space on which the variables are measured, and
the discreteness or continuity of the variable values (measurements) themselves. If
the space is continuous (a field view), variable values must be continuous valued
since continuity of the field could not be preserved under discrete valued variables.
If the space is discrete (an object view) or if a continuous space has been made
discrete, variable values may be continuously valued or discrete valued (nominal
or ordinal valued) (see Haining 2003, p. 57).

The classification of spatial data by type of conception of space and level of
measurement is a necessary first step in specifying the appropriate statistical
technique to use to answer a question. But the classification is not sufficient
because the same spatial object may be representing quite different geographical
spaces. For example, points (so-called centroids) are also used to represent areas.
Table 1.1 provides a typology that distinguishes four types of spatial data:

(i) point pattern data, that is, a data set consisting of a series of point locations in
some study region, at which events of interest (in a general sense) have
occurred, such as cases of a disease or incidence of a type of crime,

(ii) field data (also termed geostatistical data) that relate to variables which are
conceptually continuous (the field view) and whose observations have been
sampled at a predefined and fixed set of point locations,
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(iii) area data where data values are observations associated with a fixed number
of areal units (area objects) that may form a regular lattice, as with remotely
sensed images, or be a set of irregular areas or zones, such as counties,
districts, census zones, and even countries,

(iv) spatial interaction data (also termed origin–destination flow or link data),
consisting of measurements each of which is associated with a pair of
point locations, or pair of areas.

In this book, we do neither consider point pattern data nor field (geostatistical)
data. The focus is rather on the analysis of object data where the observations
relate to areal units (see Part I) and on the analysis of origin–destination flow
(spatial interaction) data (see Part II). The analysis of spatial interaction data has a
long and distinguished history in the study of human activities, such as trans-
portation movements, migration, and the transmission of information and
knowledge. And area data provide an important perspective for spatial data
analysis applications, in particular in the social sciences.

1.3 The Spatial Data Matrix

All the analytical techniques in this book use a data matrix that captures the spatial
data needed for the conduct of analysis. Spatial data are classified by the type of
spatial object (point object, area object) to which variables refer and the level of
measurement of these variables.

Let Z1; Z2; . . .; ZK refer to K random variables and S to the location of the point
or area. Then the spatial data matrix (see Haining 2003, pp. 54–57) can be gen-
erally represented as

Data on the K variables Location

Z1 Z2 . . . ZK S

z1ð1Þ z2ð1Þ . . . zKð1Þ sð1Þ
z1ð2Þ z2ð2Þ . . . zKð2Þ sð2Þ

..

. ..
. ..

. ..
.

z1ðnÞ z2ðnÞ . . . zKðnÞ sðnÞ

2
66664

3
77775

Case 1

Case 2

..

.

Case n

which may be shortened to
(

z1ðiÞ; z2ðiÞ; . . .; zKðiÞ j sðiÞ
)

i¼1;...; n

ð1:1Þ

where the lower case symbol zk denotes an realisation (actual data value) of
variable Zk ðk ¼ 1; . . .; KÞ while the symbol i inside the brackets references the
particular case. Attached to each case i ¼ 1; . . .; n is a location s(i) that represents
the location of the spatial object (point or area). Since we are only interested in

1.2 Types of Spatial Data 5



two-dimensional space, referencing will involve two geographic coordinates s1

and s2. Thus, sðiÞ ¼ ðs1ðiÞ; s2ðiÞÞ0 where ðs1ðiÞ; s2ðiÞÞ0 is the transposed vector of
ðs1ðiÞ; s2ðiÞÞ: It is important to note that in this book we generally consider
methods that treat locations as fixed and do not consider problems where there is a
randomness associated with the location of the cases.

In the case of data referring to point objects in two-dimensional space the
location of the ith point may be given by a pair of (orthogonal) Cartesian coor-
dinates as illustrated in Fig. 1.1a. The axes of the coordinate system will usually
have been constructed for the particular data set, but a national or global refer-
encing system may be used. In the case of data referring to irregularly shaped area
objects one option is to select a representative point such as the centroid and then
use the same procedure as for a point object to identify sðiÞ ¼ ðs1ðiÞ; s2ðiÞÞ0 for
i ¼ 1; . . .; n. Alternatively, each area i is labelled and a look-up table provided

(a)

(b)

(c)

z
z

z z

z
z z

z

z

z
z

z z

z
z z

z

z

z
z

z z

z
z z

z

z

Fig. 1.1 Assigning locations to spatial objects (points, areas) (adapted from Haining 2003, p. 55)
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so that rows of the data matrix can be matched to areas on the map (see Fig. 1.1b).
If the areas are regularly shaped as in the case of a remotely sensed image they
may be labelled as in Fig. 1.1c.

There are situations where the georeferencing information provided by fsðiÞg in
expression (1.1) has to be supplemented with neighbourhood information that
defines not only which pairs of areas are adjacent to each other but may also
quantify the closeness of that adjacency. This information is needed for the
specification of many spatial statistical models such as spatial regression models.

It is worth noting that on various occasions throughout the book, the variables
Z1; . . .; ZK will be divided into groups and labelled differently. In the case of data
modelling, the variable whose variation is to be modelled will be denoted Y and
the variables used to explain the variations in the dependent variable are called
explanatory or independent variables, labelled differently such as X1; . . .; XQ.

Spatial interaction data record flows between locations (points, areas) or
between nodes (intersection points) of a network. The situation, we are considering
in this book is one of a series of observations yijði; j ¼ 1; . . .; nÞ, on random
variables Yij, each of which corresponds to movements of people, goods, capital,
information, knowledge, and so on between spatial locations i and j, where these
locations may be point locations or alternatively areas or zones. These data are
captured in the form of an origin–destination or spatial interaction matrix

Destination location

O
ri

gi
n

lo
ca

ti
on

y11 y12 . . . y1n

y21 y22 . . . y2n

..

. ..
. ..

.

yn01 yn02 . . . yn0n

2
66664

3
77775

ð1:2Þ

where the number of rows and columns correspond to the number of origin and
destination locations, respectively, and the entry on row i and column j, yij, records
the observed total flow from origin location i to destination location j. In the
special case where each location is both origin and destination n0 ¼ n. Georefer-
encing of the origin and destination locations follows the same procedures as
described in the above case of object data.

1.4 Spatial Autocorrelation

The basic tenet underlying the analysis of spatial data is the proposition that values of
a variable in near-by locations are more similar or related than values in locations that
are far apart. This inverse relation between value association and distance is sum-
marised by Tobler’s first law stating that ‘‘everything is related to everything else, but
near things are more related than distant things’’ (Tobler 1970, p. 234).

If near-by observations (i.e. similar in location) are also similar in variable
values then the pattern as a whole is said to exhibit positive spatial autocorrelation

1.3 The Spatial Data Matrix 7



(self-correlation). Conversely, negative spatial autocorrelation is said to exist when
observations that are near-by in space tend to be more dissimilar in variable values
than observations that are further apart (in contradiction to Tobler’s law). Zero
autocorrelation occurs when variable values are independent of location. It is
important to note that spatial autocorrelation renders conventional statistical analysis
invalid and makes spatial data analysis different from other forms of data analysis.

A crucial aspect of defining spatial autocorrelation is the determination of near-
by locations, that is, those locations surrounding a given data point that could be
considered to influence the observation at that data point. Unfortunately, the
determination of that neighbourhood is not without some degree of arbitrariness.

Formally, the membership of observations in the neighbourhood set for each
location may be expressed by means of an n-by-n spatial contiguity or weights
matrix W

W ¼

W11 W12 . . . W1n

W21 W22 . . . W2n

..

. ..
. ..

.

Wn1 Wn2 . . . Wnn

2
6664

3
7775 ð1:3Þ

where n represents the number of locations (observations). The entry on row i ði ¼
1; . . .; nÞ and column j ðj ¼ 1; . . .; nÞ, denoted as Wij, corresponds to the pair (i, j) of
locations. The diagonal elements of the matrix are set to zero, by convention, while
the non-diagonal elements Wij ði 6¼ jÞ take on non-zero values (one, for a binary
matrix) when locations i and j are considered to be neighbours, otherwise zero.

For areal objects, such as the simple nine-zone system shown in Fig. 1.2a, (first
order) spatial contiguity (or adjacency) is often used to specify neighbouring
locations in the sense of sharing a common border. On this basis, Fig. 1.2a may be
re-expressed as the graph shown in Fig. 1.2b. Coding Wij ¼ 1 if zones i and j are
contiguous, and Wij ¼ 0 otherwise, we may derive a weights matrix W shown in
Table 1.2. This matrix provides an example of the simplest way of specifying W.

In the classical case of a regular square grid layout the options of contiguity are
referred to as the rook contiguity case (only common boundaries), the bishop
contiguity case (only common vertices), and the queen contiguity case (both
boundaries and vertices). Depending on the chosen criterion, an area will have four
(rook, bishop) or eight (queen) neighbours on average. This implies quite different
neighbour structures. Even in the case of irregularly shaped areal units, a decision
has to be made whether areas that only share a common vertex should be con-
sidered to be neighbours (queen criterion) or not (rook criterion).

Contiguity may and is often defined as a function of the distance between
locations (areas, points). In this sense, two objects are considered to be contiguous
if the distance between them falls within a chosen range. In essence, the spatial
weights matrix summarises the topology of the data set in graph-theoretic terms
(nodes and links).

Higher order contiguity is defined in a recursive manner, in the sense that an object
(point, area) is considered to be contiguous of a higher order to a given object if it is
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first order contiguous to an object that is contiguous to an object that is contiguous of
the next lower order. For example, objects that are viewed to be second order con-
tiguous to an object are first order contiguous to the first order contiguous ones. In
Fig. 1.2a, for example, areas 1 and 2 are first order contiguous to area 3, and area 3 is
first order contiguous to area 6. Hence, areas 1 and 2 are second order contiguous to
area 6. Thus, higher order contiguity yields bands of observations around a given
location being included in the neighbourhood set, at increasing instances.

Clearly, a large number of spatial weights matrices may be derived for a given
spatial layout such as that one shown in Fig. 1.2a. In particular, the spatial weights
matrix does not have to be binary, but can take on any value that reflects the
interaction between spatial units i and j, for example, based on inverse distances or
inverse distances raised to some power.

The type of matrix shown in Table 1.2 allows us to develop measures of spatial
autocorrelation. Many tests and indicators of spatial autocorrelation are available.

Map 

Graph 

5

2

4
7

6

8

9
3

5

1

2

4
7

6

8

9
3

4
7

9
3

2

5

8

6

1

(a)

(b)

Fig. 1.2 A zoning system:
a a simple mosaic of discrete
zones, b re-expressed as a
graph

Table 1.2 A spatial weights matrix W derived from the zoning system in Fig. 1.2: the case of a
binary first order contiguity matrix

1 2 3 4 5 6 7 8 9

1 0 1 1 1 0 0 0 0 0
2 1 0 1 0 1 0 0 0 0
3 1 1 0 1 1 1 0 1 0
4 1 0 1 0 0 1 1 0 0
5 0 1 1 0 0 0 0 1 0
6 0 0 1 1 0 0 1 1 1
7 0 0 0 1 0 1 0 0 1
8 0 0 1 0 1 1 0 0 1
9 0 0 0 0 0 1 1 1 0

1.4 Spatial Autocorrelation 9



Chief among these is Moran’s spatial autocorrelation statistic (see Cliff and Ord
1973, 1981). At the local scale Getis and Ord’s statistics (see Getis and Ord 1992;
Ord and Getis 1995) and Anselin’s LISA statistics (see Anselin 1995) enable
analysts to evaluate spatial autocorrelation at particular sites. We will say more
about this in the next chapter.

1.5 The Tyranny of Spatial Data

Spatial data analysis crucially depends on data quality. Good data are reliable,
contain few or no mistakes, and can be used with confidence. Unfortunately,
nearly all spatial data are flawed to some degree. Errors may arise in measuring
both the location (points, lines, areas) and attribute properties of spatial objects. In
the case of measurements of location (position), for example, it is possible for
every coordinate to be subject to error. In the two-dimensional case, a measured
location would be subject to error in both coordinates.

Attribute errors can arise as a result of collecting, storing, manipulating, editing
or retrieving attribute values. They can also arise from inherent uncertainties
associated with the measurement process and definitional problems, including the
point or area location a measurement refers to (Haining 2003, pp. 59–63; see also
Wang et al. 2010). The solution to the data quality problem is to take the necessary
steps to avoid having faulty data determining research results.

The particular form (i.e. size, shape and configuration) of the spatial aggregates
can affect the results of the analysis to a varying—usually unknown—degree as
evidenced in various types of analysis (see, for example, Openshaw and Taylor
1979; Baumann et al. 1983). This problem generally has become recognised as the
modifiable areal unit problem (MAUP), the term stemming from the fact that areal
units are not ‘natural’ but usually arbitrary constructs.

Confidentiality restrictions usually dictate that data (for example, census data)
may not be released for the primary units of observation (individuals, households
or firms), but only for a set of rather arbitrary areal aggregations (enumeration
districts or census tracts). The problem arises whenever area data are analysed or
modelled and involves two effects: One derives from selecting different areal
boundaries while holding the overall size and the number of areal units constant
(the zoning effect). The other derives from reducing the number but increasing the
size of the areal units (the scale effect). There is no analytical solution to the
MAUP (Openshaw 1981), but the modifiable areal unit problem can be investi-
gated through simulation of large numbers of alternative systems of areal units
(Longley et al. 2001, p. 139). Such systems can obviously take many different
forms, both in relation to the level of spatial resolution and also in relation to the
shape of the areas.

An issue that has been receiving increasing attention in recent years relates to
the data suitability problem. It is not unusual to find published work where the
researcher uses data available at one spatial scale to come to conclusions about a
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relationship or process at a finer scale. This ecological fallacy, as it is known, leads
us into a false sense of the power of our techniques and usefulness of our con-
clusions (Getis 1995). The ecological fallacy and the modifiable areal unit problem
have long been recognised as problems in applied spatial data analysis, and,
through the concept of spatial autocorrelation, they are understood as related
problems.

1.5 The Tyranny of Spatial Data 11





Part I
The Analysis of Area Data

In Part I we consider the analysis of area data. Area data are observations
associated with a fixed number of areal units (areas). The areas may form a regular
lattice, as with remotely sensed images, or be a set of irregular areas or zones, such
as countries, districts and census zones.

We draw a distinction between methods that are essentially exploratory in
nature, concerned with mapping and geovisualisation, summarising and analysing
patterns, and those which rely on the specification of a statistical model and the
estimation of the model parameters. The distinction is useful, but not clear cut. In
particular, there is usually a close interplay of the two, with data being visualised
and interesting aspects being explored, which possibly lead to some modelling.

Chapter 2 will be devoted to methods and techniques of exploratory data
analysis that concentrates on the spatial aspects of the data, that is, exploratory
spatial data analysis [ESDA] (see Haining 2003; Bivand 2010). The focus is on
univariate techniques that elicit information about spatial patterns of a variable,
and identify atypical observations (outliers).

Exploratory spatial data analysis is often only a preliminary step towards more
formal modelling approaches that seek to establish relationships between the
observations of a variable and the observations of other variables, recorded for
each area. Chapter 3 provides a concise overview of some of the central meth-
odological issues related to spatial regression analysis in a simple cross-sectional
setting.

Keywords Area data � Spatial weights matrix � Moran’s I statistic � Geary’s c
statistic � G statistics � LISA statistics � Spatial regression models � Spatial
Durbin model � Tests for spatial dependence � Maximum likelihood estima-
tion � Model parameter interpretation





Chapter 2
Exploring Area Data

Abstract Here in this chapter, we first consider the visualisation of area data before
examining a number of exploratory techniques. The focus is on spatial dependence
(spatial association). In other words, the techniques we consider aim to describe
spatial distributions, discover patterns of spatial clustering, and identify atypical
observations (outliers). Techniques and measures of spatial autocorrelation dis-
cussed in this chapter are available in a variety of software packages. Perhaps the
most comprehensive is GeoDa, a free software program (downloadable from
http://www.geoda.uiuc.edu). This software makes a number of exploratory spatial
data analysis (ESDA) procedures available that enable the user to elicit information
about spatial patterns in the data given. Graphical and mapping procedures allow
for detailed analysis of global and local spatial autocorrelation results. Another
valuable open software is the spdep package of the R project (downloadable from
http://cran.r-project.org). This package contains a collection of useful functions to
create spatial weights matrix objects from polygon contiguities, and various tests for
global and spatial autocorrelation (see Bivand et al. 2008).

Keywords Area data � Spatial weights matrix � Contiguity-based specifications
of the spatial weights matrix � Distance-based specifications of the spatial weights
matrix � k-nearest neighbours � Global measures of spatial autocorrelation �
Moran’s I statistic � Geary’s c statistic � Local measures of spatial autocorrelation �
G statistics � LISA statistics

2.1 Mapping and Geovisualisation

In exploratory spatial data analysis the map has an important role to play. The map
is the most established and conventional means of displaying areal data. There is a
variety of ways ascribing continuous variable data to given areal units that are pre-
defined. In practice, however, none is unproblematic. Perhaps the most commonly

M. M. Fischer and J. Wang, Spatial Data Analysis,
SpringerBriefs in Regional Science, DOI: 10.1007/978-3-642-21720-3_2,
� Manfred M. Fischer 2011

15



used form of display is the standard choropleth map (Longley et al. 2001,
pp. 251–252; Bailey and Gatrell 1995, pp. 255–260; Demšar 2009, pp. 48–55).
This is a map where each of the areas is coloured or shaded according to a discrete
scale based on the value of the variable (attribute) of interest within that area. The
number of classes (categories) and the corresponding class (category) intervals can
be based on several different criteria.

There are no hard rules about numbers of classes. Clearly, this is a function of
how many observations we have. For example, if we have only a sample of 20 or
30 areas it hardly makes sense to use seven or eight classes. But perhaps with some
hundreds of measurements a set of seven or eight classes is likely to prove
informative. As a general rule of thumb some statisticians recommend a number of
classes of (1 ? 3.3 ln n), where n is the number of areas and ‘ln’ stands for the
logarithm naturalis (Bailey and Gatrell 1995, p. 153).

As for class interval selection, four basic classification schemes may be used to
divide interval and ratio areal data into categories (Longley et al. 2001, p. 259):

(i) Natural breaks by which classes are defined according to some natural group-
ings of the data values. The breaks may be imposed on the basis of break points
which are known to be relevant in a particular application context, such as
fractions and multiples of mean income levels, or rainfall thresholds of vege-
tation (‘arid’, ‘semi-arid’, ‘temperate’ etc.). This is a deductive assignment of
breaks, while inductive classifications of data values may be carried out by using
GISystem software tools to look for relatively large jumps in data values, as
shown in Fig. 2.1a.

(ii) Quantile breaks, where each of a predetermined number of classes (catego-
ries) contains an equal number of observations (see Fig. 2.1b). Quartile (four
category) and quintile (five category) classifications are commonly used in
practice. The numeric size of each class is rigidly imposed. Note that the
placing of the class boundaries may assign almost identical observations to
adjacent classes, and observations with quite widely different values to the
same class. The resulting visual distortion can be minimised by increasing the
number of classes.

(iii) Equal interval breaks are self-explanatory (see Fig. 2.1c). They are valuable
where observations are reasonably uniformly distributed over their range. But
if the data are markedly skewed they will give large numbers of observations
in just a few classes. This is not necessarily a problem, since unusually high
(low) values are easily picked out on the map. An extension of this scheme is
to use ‘‘trimmed equal’’ intervals where the top and bottom of the frequency
distribution (for example, the top and bottom ten percent) are each treated as
separate classes and the remainder of the observations are divided into equal
classes.

(iv) Standard deviation classifications are based on intervals distributed around the
mean in units of standard deviation (see Fig. 2.1d). They show the distance of an
observation from the mean. One calculates the mean value and then generates
class breaks in standard deviation measures above and below it.
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We can obtain a large variety of maps simply by varying the class intervals. It is
important to try out some of the above possibilities to get some initial sense of
spatial variation in the data.

There are also other problems associated with the use of choropleth maps. First,
choropleth maps bring the (dubious) visual implication of within-area uniformity of
variable values. Moreover, conventional choropleth mapping allows any physically
large area to dominate the display, in a way which may be quite inappropriate for the
type of data being mapped. For example, in mapping socioeconomic data, large and
sparsely populated rural areas may dominate the choropleth map because of the
visual ‘intrusiveness’ of the large areas. But the real interest may be in physically
smaller areas, such as the more densely populated urban areas.

A variant of the conventional choropleth map is the dot density map that uses
dots as a more aesthetically pleasing means of representing the relative density of
zonally averaged data, but not as a means of depicting the precise location of point
events. Proportional circles provide one way around this problem, since the circle
can be centred on any convenient point within an areal unit. But there is a tension
between using circles that are of sufficient size to convey the variability in the data
and the problems of overlapping circles (Longley et al. 2001, p. 259).

Second, the variable of interest has arisen from the aggregation of individual
data to the areas. It has to be taken into account that these areas may have been
designed rather arbitrarily on the basis of administrative convenience or ease of
enumeration. Hence, any pattern that is observed across the areas may be as much
a function of the area boundaries chosen, as it is of the underlying spatial distri-
bution of variable values. This has become known as the modifiable areal unit
problem. It can be a particularly significant problem in the analysis of socioeco-
nomic and demographic data, where the enumeration areas have rarely been
arrived at any basis that relates to the data under study (see also Sect. 1.5).

Percent
Population over
60 years

       18.5% or less
       18.5 – 20.1% 
       20.1 – 21.5% 
       21.5 – 23.4% 

23.4% and more

Percent 
Population over 
60 years

       19.1% or less
       19.1 – 20.4% 
       20.4 – 21.3% 
       21.3 – 22.8% 

22.8% and more

(a) (b)

Percent
Population over 
60 years

       17.4% or less
       17.4 – 19.6% 
       19.6 – 21.8% 
       21.8 – 24.0% 

24.0% and more

Percent 
Population over 
60 years

< (-1.5) Std.Dev. 
       (-1.5) – (-0.5) Std.Dev.

Mean ±0.5 Std.Dev. 
       0.5 – 1.5 Std.Dev.

≥ 1.5 Std.Dev.

(c) (d)

Fig. 2.1 Class definition using a natural breaks, b quantile breaks, c equal interval breaks, and
d standard deviation breaks
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A solution to the problem of modifiable areal units is difficult. The ideal solution is
to avoid using area aggregated data altogether if at all possible. In some
applications of spatial data analysis, such as epidemiology and crime, one could
perform valuable analyses on point data, without aggregating the data to a set of
inherently arbitrary areal units. But of course in many cases such an approach will
be not viable, and one has to live with areal units for which data are available.

Third, it is important to realise that the statistical results of any analysis of
patterns and relationships will inevitably depend on the particular areal configu-
ration which is being used. In general, data should be analysed on the basis of the
smallest areal units for which they are available and aggregation to arbitrary larger
areas should be avoided, unless there are good reasons to doing so. It is also
important to check any inferences drawn from the data by using different areal
configurations of the same data, if possible.

One approach to the problem of the dominance of physically large areas is to
geometrically transform each of the areal units in such a way as to make its area
proportional to the corresponding variable value, whilst at the same time main-
taining the spatial contiguity of the areal units. The resulting map is often termed
cartogram (Bailey and Gatrell 1995, p. 258). Cartograms lack planimetric cor-
rectness, and distort area or distance in the interest of some specific objective. The
usual objective is to reveal patterns that might not be readily apparent from a
conventional map. Thus, the integrity of the spatial object (area), in terms of areal
extent, location, contiguity, geometry, and topology is made subserviant to an
emphasis upon variable values or particular aspects of spatial relations.

An example of a cartogram is given in Fig. 2.2 that shows a country’s size as
the proportion of global gross domestic product (gdp) found there in 2005, mea-
sured in terms of constant US dollars. The map reveals that global gdp is
concentrated in a few world regions, in North America, Western Europe and
North-East Asia. This global concentration matters greatly for the development
prospects of today’s lagging world regions, especially Africa which shows up as a
slender peninsula in this cartogram.

Mapping and geovisualisation is an important step to provoke questions, but
exploratory data analysis requires highly interactive, dynamic data displays.
Recent developments in spatial data analysis software provide an interactive
environment that combines maps with statistical graphs, using the technology of
dynamically linked windows. Perhaps, the most comprehensive software with such
capabilities is GeoDa. GeoDa includes functionality from conventional mapping to
exploratory data analytic tools, and the visualisation of global and local autocor-
relation. The software adheres to ESRI’s (Environmental Systems Research
Institute’s) shape file as the standard for storing spatial information, and uses
ESRI’s Map-Objects LT2 technology for spatial data access, mapping and
querying.

All graphic windows are based on Microsoft Foundation Classes and hence
limited to Microsoft Windows platforms. In contrast, the computational engine
(including statistical operations) is pure C++ code and largely cross platform.
The bulk of the graphical interface implements five basic classes of windows:
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map, histogram, box plot, scatter plot (including the Moran scatter plot, see
Anselin 1996), and grid (for the table selection and calculations). The choropleth
map, including cluster maps for the local indicators of spatial autocorrelation
(see Sect. 2.4), are derived from MapObjects classes. For an outline of the design
and review of the overall functionality of GeoDa see Anselin et al. (2010).

2.2 The Spatial Weights Matrix

The focus of exploratory spatial data analysis is on measuring and displaying global
and local patterns of spatial association, indicating local non-stationarity, discov-
ering islands of spatial heterogeneity, and so on. A crucial aspect of defining spatial
association (autocorrelation) is the determination of the relevant ‘‘neighbourhood’’
of a given area, that is, those areal units surrounding a given data point (area) that
would be considered to influence the observation at that data point. In other words,
neighbouring areas are spatial units that interact in a meaningful way. This inter-
action could relate, for example, to spatial spillovers and externalities.

The neighbourhood structure of a data set is most conveniently formalised in
form of a spatial weights matrix W, of dimension equal to the a priori given
number n of areal units considered. Each area is identified with a point (centroid)
where Cartesian coordinates are known. In this matrix each row and matching
column corresponds to an observation pair. The elements Wij of this matrix take on
a non-zero value (one for a binary matrix) when areas (observations) i and j are

Percent of world gross domestic product
under 0.32 0.32 – 1.33 1.33 – 3.47 3.47 – 6.65 6.65 – 25.73

Fig. 2.2 A cartogram illustrating the concentration of global gross domestic product in a few
world regions. A country’s size shows the proportion of global gross domestic product found
there. Data source: GISCO-Eurostat (European Commission); Copyright: EuroGeographics for
the European administrative boundaries; Copyright: UN-FAO for the world administrative
boundaries (except EuroGeographics members)
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considered to be neighbours, and a zero value otherwise. By convention, an
observation is not a neighbour to itself, so that the main diagonal elements Wii ði ¼
1; . . .; nÞ are zero.

The spatial weights matrix is often row-standardised, that is, each row sum in
the matrix is made equal to one, the individual values Wij are proportionally
represented. Row-standardisation of W is desirable so that each neighbour of an
area is given equal weight and the sum of all Wij (over j) is equal to one. If the
observations are represented as an n-by-1 vector X, the product, WX, of such a
row-standardised weights matrix W with X has an intuitive interpretation. Since for
each element i WX equals Rj WijXj, WX is in fact a vector of weighted averages of
neighbouring values. This operation and the associated variable are typically
referred to as (first order) spatial lag of X, similar to the terminology used in time
series analysis. Note that the space in which the observations are located need not
to be geographic, any type of space is acceptable as long as the analyst can specify
the spatial interactions between the areas given.

One way to represent the spatial relationships with areal data is through the
concept of contiguity. First order contiguous neighbours are defined as areas that
have a common boundary. Formally,

Wij ¼
1 if area j shares a common boundary with area i
0 otherwise:

�
ð2:1Þ

Alternatively, two areas i and j may be defined as neighbours when the distance
dij between their centroids is less than a given critical value, say d; yielding
distance-based spatial weights

Wij ¼
1 if dij\d ðd [ 0Þ
0 otherwise

�
ð2:2Þ

where distances are calculated from information on latitude and longitude of the
centroid locations. Examples include straight-line distances, great circle distances,
travel distances or times, and other spatial separation measures.

Straight-line distances determine the shortest distance between any two point
locations in a flat plane, treating longitude and latitude of a location as if they were
equivalent to plane coordinates. In contrast, great circle distances determine dis-
tances between any two points on a spherical surface such as the earth as the length
of the arc of the great circle between them (see Longley et al. 2001, pp. 86–92, for
more details). In many applications the simple measures—straight-line distances
and great circle distances—are not sufficiently accurate estimates of actual travel
distances, and one is forced to resort to summing the actual lengths of travel
routes, using a GISystem. This normally means summing the length of links in a
network representation of a transportation system.

The distance-based specification (2.2) of the weights matrix depends on a given
critical distance value, d. When there is a high degree of heterogeneity in the
size of the areal units, however, it can be difficult to find a satisfactory critical
distance. In such circumstances, a small distance will tend to lead to a lot of islands
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(i.e. unconnected observations), while a distance chosen to guarantee that each
areal unit (observation) has at least one neighbour may yield an unacceptably large
number of neighbours for the smaller areal units (Anselin 2003a).

In empirical applications, this problem is encountered when building distance-
based spatial weights, for example, for NUTS-2 regions in Europe, where such
areal units in sparsely populated parts of Europe are much larger in physical size
than in more populated parts such as in Central Europe. A common solution to this
problem is to constrain the neighbour structure to the k-nearest neighbours, and
thereby precluding islands and forcing each areal unit to have the same number
k of neighbours. Formally,

Wij ¼
1 if centroid of j is one of the k nearest centroids to that of i
0 otherwise:

�
ð2:3Þ

If the number of nearest neighbours, for example, is set to six, then the non-
normalised weights matrix will have six ones in each row, indicating the six
closest observations to i ¼ 1; . . .; n: The number of neighbours, k, is the parameter
of this weighting scheme. The choice of k remains an empirical matter (see LeSage
and Fischer 2008).

The above specifications of the spatial weights matrix share the property that
their elements are fixed. It is straightforward to extend this notion by changing the
weighting on the neighbours so that more distant neighbours get less weight by
introducing a parameter h that allows to indicate the rate of decline of the weights.
A commonly used continuous weighting scheme is based on the inverse distance
function so that the weights are inversely related to the distance separating area
i and area j

Wij ¼ d�h
ij if intercentroid distance dij\d ðd [ 0; h[ 0Þ

0 otherwise

�
ð2:4Þ

where the parameter h is either estimated or set a priori. Common choices are the
integers one and two, the latter following from the Newtonian gravity model.
Another continuous weighting scheme is derived from the negative exponential
function yielding

Wij ¼
expð�h dijÞ if intercentroid distance dij\d ðd [ 0; h[ 0Þ
0 otherwise

�
ð2:5Þ

where h is a parameter that may be estimated, but is usually a priori chosen by the
researcher. A popular choice is h ¼ 2:

Evidently, a large number of spatial weights matrices can be derived for the
same spatial layout. It is important to always keep in mind that the results of any
spatial statistical analysis are conditional on the spatial weights matrix chosen. It is
often good practice to check the sensitivity of the conclusions to the choice of the
spatial weights matrix, unless there is a compelling reason on theoretical grounds
to consider just a single one.
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2.3 Global Measures and Tests for Spatial Autocorrelation

Spatial autocorrelation (association) is the correlation among observations of a
single variable (auto meaning self) strictly attributable to the proximity of those
observations in geographic space. This notion is best summarised by Tobler’s first
law which states that ‘‘everything is related to everything else, but near things are
more related than distant things’’ (Tobler 1970, p. 234). Today, a number of
measures of spatial autocorrelation are available (see Getis 2010 for a review).

Spatial autocorrelation measures deal with covariation or correlation between
neighbouring observations of a variable. And thus compare two types of infor-
mation: similarity of observations (value similarity) and similarity among loca-
tions (Griffith 2003). To simplify things, we will use the following notation

n number of areas in the sample,
i; j any two of the areal units,
zi the value (observation) of the variable of interest for region i,
Wij the similarity of i’s and j’s locations, with Wii ¼ 0 for all i,
Mij the similarity of i’s and j’s observations of the variable.

Spatial autocorrelation (association) measures and tests may be differentiated
by the scope or scale of analysis. Generally one distinguishes between global and
local measures. Global implies that all elements in the W matrix are brought to
bear on an assessment of spatial autocorrelation. That is, all spatial associations of
areas are included in the calculation of spatial autocorrelation. This yields one
value for spatial autocorrelation for any one spatial weights matrix. In contrast,
local measures are focused. That is, they assess the spatial autocorrelation asso-
ciated with one or a few particular areal units.

Global measures of spatial autocorrelation compare the set of value (obser-
vation) similarity Mij with the set of spatial similarity Wij, combining them into a
single index of a cross-product, that is

Xn

i¼1

Xn

j¼1

Mij Wij: ð2:6Þ

In other words, the total obtained by multiplying every cell in the W matrix with its
corresponding entry in the M matrix, and summing. Adjustments are made to each
index to make it easy to interpret (see below).

Various ways have been suggested for measuring value similarity (association)
Mij; dependent upon the scaling of the variable. For nominal variables, the
approach is to set Mij to one if i and j take the same variable value, and zero
otherwise. For ordinal variables, value similarity is generally based on comparing

the ranks of i and j. For interval variables both the squared difference ðzi � zjÞ2 and
the product ðzi � �zÞ ðzj � �zÞ are commonly used, where �z denotes the average of the
z-values.
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The two measures that have been most widely used for the case of areal units
and interval scale variables are Moran’s I and Geary’s c statistics. Both indicate
the degree of spatial association as summarised for the whole data set. Moran’s I
uses cross-products to measure value association, and Geary’s c squared dif-
ferences. Formally, Moran’s I is given by the expression (see Cliff and Ord
1981, p. 17)

I ¼ n

Wo

Pn
i¼1

Pn
j¼1 Wij zi � �zð Þ zj � �z

� �
Pn

i¼1 zi � �zð Þ2
ð2:7Þ

with the normalising factor

Wo ¼
Xn

i¼1

Xn

j 6¼i

Wij: ð2:8Þ

For ease of interpretation the spatial weights Wij may be in row-standardised form,
though this is not necessary, and by convention Wii ¼ 0 for all i. Note that for a
row-standardised W, Wo ¼ n .

Geary’s c is estimated as (Cliff and Ord 1981, p. 17)

c ¼ n� 1ð Þ
2 Wo

Pn
i¼1

Pn
j¼1 Wij zi � zj

� �2

Pn
i¼1 zi � �zð Þ2

ð2:9Þ

where Wo is given by Eq. (2.8). Neither of these statistics is constrained to lie in
the (-1, 1) range as in the case of conventional non-spatial product moment
correlation. This is unlikely to present a practical problem for most real world data
sets and reasonable W matrices (Bailey and Gatrell 1995, p. 270).

Spatial autocorrelation tests are decision rules based on statistics such as
Moran’s I and Geary’s c to assess the extent to which the observed spatial
arrangement of data values departs from the null hypothesis that space does not
matter. This hypothesis implies that near-by areas do not affect one another such
that there is independence and spatial randomness.

In contrast, under the alternative hypothesis of spatial autocorrelation (spatial
association, spatial dependence), the interest renders on cases where large values
are surrounded by other large values in near-by areas, or small values are sur-
rounded by large values and vice versa. The former is referred to as positive spatial
autocorrelation, and the latter as negative spatial autocorrelation. Positive spatial
autocorrelation implies a spatial clustering of similar values (see Fig. 2.3a), while
negative spatial autocorrelation implies a checkerboard pattern of values (see
Fig. 2.3b).

Spatial autocorrelation is considered to be present when the spatial auto-
correlation statistic computed for a particular pattern takes on a larger value,
compared to what would be expected under the null hypothesis of no spatial
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association. What is viewed to be significantly larger depends on the distri-
bution of the test statistic. We consider this question for the case of Moran’s I
statistic next.

In principle, there are two main approaches to testing observed I-values for
significant departure from the hypothesis of zero spatial autocorrelation (Cliff and
Ord 1981, p. 21). The first is the random permutation test. Under the randomi-
sation assumption the observed value of I is assessed relative to the set of all
possible values that could be obtained by randomly permuting the observations
over the locations in the data set. Suppose we have n observations, zi, relating to
the a priori given areal units i ¼ 1; . . .; n:

Then n! permutations are possible, each corresponds to a different arrangement
of the n observations, zi, over the areal units. One of these relates to the observed
arrangement. The Moran I statistic can be computed for any of these n! permu-
tations. The resulting empirical distribution function provides the basis for a
statement about the extremeness (or lack of extremeness) of the observed statistic,
relative to the values computed under the null hypothesis (the randomly permuted
values).

But computation of as many as n! arrangements will be infeasible, even in the
case of smaller n, since, for example, for n = 10 already 3,628,000 I-values would
have to be calculated. But a close approximation to the permutation distribution
can be obtained by using a Monte Carlo approach and simply sampling randomly
from a reasonable number of the n! possible permutations. Note that permutation
re-orders the original data, whereas a Monte Carlo procedure generates ‘‘new’’
data of similar structure.

The other approach to testing observed I-values for significant departure from
the hypothesis of zero spatial autocorrelation is based on an approximate sampling
distribution of I. If there is a moderate number of areal units then an approximate
result for the sampling distribution of I under certain assumptions may be utilised
to develop a test. If it is assumed that the zi are observations on random variables
Zi whose distribution is normal, then I has a sampling distribution that is appro-
priately normal with the moments

(a) (b)

Fig. 2.3 Patterns of spatial autocorrelation on a regular grid: a positive spatial autocorrelation
where cells with similar values (gray tones) are near-by; and b negative spatial autocorrelation
where near-by cells have dissimilar values
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EðIÞ ¼ � 1
ðn� 1Þ ð2:10Þ

var ðIÞ ¼ n2ðn� 1ÞW1 � n ðn� 1ÞW2 � 2 W2
o

ðnþ 1Þ ðn� 1Þ2 W2
o

ð2:11Þ

where

Wo ¼
Xn

i¼1

Xn

j 6¼i

Wij ð2:8Þ

W1 ¼
1
2

Xn

i¼1

Xn

j 6¼i

Wij þWji

� �2 ð2:12Þ

W2 ¼
Xn

k¼1

Xn

j¼1

Wkj þ
Xn

i¼1

Wik

 !2

: ð2:13Þ

Hence, we can test the observed value of I against the percentage points of the
appropriate sampling distribution. An ‘‘extreme’’ observed value of I indicates
significant spatial autocorrelation. A value of Moran’s I that exceeds its expected
value of -1/(n-1) points to positive spatial autocorrelation, while a value of
Moran’s I that is below the expectation indicates negative spatial autocorrelation
(Bailey and Gatrell 1995, pp. 281–282).

Note that the hypothesis involved in each of the above two tests is somewhat
different. The randomisation test embodies the assumption that no values of zi

other than those observed are realisable. In other words the data are treated as a
population and the question analysed is how the data values are arranged spa-
tially. Hence, the test is a test of patterns in the observations relative to the set of
all possible patterns in the given observations. The approximate sampling dis-
tribution test makes the assumption that the observations zi are observations on
(normal) random variables Zi: That is, they are one realisation of a random
process and other possible realisations can occur. The test is, thus, one of spatial
autocorrelation, providing the distribution of the random variables Zi can
be assumed to be normal (Bailey and Gatrell 1995, pp. 280–282; Fortin and
Dale 2009).

Care is necessary in applying the above formal tests of spatial autocorrelation
when I has been computed from residuals that arise from a regression
(see Chap. 3). The problem arises because if Q parameters (regression coefficients
bq; q ¼ 1; . . .; Q) have been estimated in the regression, then the observed residuals
are subject to Q linear constraints. That is, the observed residuals will be automat-
ically spatially autocorrelated to some extent, and consequently the above testing
procedure for Moran’s I will not be valid. If Q� n, however, then it might be
justified in ignoring this. If not, then strictly one should use adjustments to the mean
and variance of the approximate sampling distribution of I. We do not go into details
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here, but refer the reader to Chap. 3 and to the literature cited therein which also
covers tests for spatial autocorrelation at spatial lags.

2.4 Local Measures and Tests for Spatial Autocorrelation

With the advent of large data sets characteristic of GISystems, it has become
clear that the need to assess spatial autocorrelation globally may be of only
marginal interest. During the past two decades, a number of statistics, called local
statistics, have been developed. These provide for each observation of a variable
an indication of the extent of significant spatial clustering of similar values
around that observation. Hence, they are well suited to identify the existence of
hot spots (local clusters of high values) or cold spots (local clusters of low
values), and are appropriate to identify distances beyond which no discernible
association exists.

Let us assume that each area i ði ¼ 1; . . .; nÞ has associated with it a value zi

that represents an observation upon the random variable Zi. Typically, it is
assumed that the Zi have identical marginal distributions. If they are independent,
we say that there is no spatial structure. Independence implies the absence of
spatial autocorrelation. But the converse is not necessarily true. Nevertheless, tests
for spatial autocorrelation are characteristically viewed as appropriate assessment
of spatial dependence (association). Usually, if spatial autocorrelation exists, it
will be exhibited by similarities among neighbouring areas, although negative
patterns of spatial association are also possible (Ord and Getis 1995, p. 287).

The basis for local tests for and measures of spatial autocorrelation comes from
the cross-product statistic

Xn

j¼1

Mij Wij ð2:14Þ

that allows for spatial autocorrelative comparisons for a given observation (areal
unit) i ¼ 1; . . .; n where Mij and Wij are defined as in the previous section. We
briefly describe four local statistics: the Getis and Ord local statistics Gi and G�i ,
and the local versions of Moran’s I and Geary’s c. Let us begin with the local
statistics suggested by Getis and Ord (1992). The statistics are computed by
defining a set of neighbours for each area i as those observations that fall within a
critical distance d from i where each i ¼ 1; . . .; n is identified with a point
(centroid). This can be formally expressed in a set of symmetric binary weights
matrices WðdÞ, with elements WijðdÞ indexed by distance d. For each distance d,
the elements WijðdÞ of the corresponding weights matrix WðdÞ equal one if i and
j are within a distance from each other, and zero otherwise. Clearly, for different
distance measures, a different set of neighbours will be found.

The Gi and G�i statistics measure the degree of local association for each
observation i in a data set containing n observations. They consist of the ratio of
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the sum of values in neighbouring areas, defined by a given distance band, to the
sum over all observations (excluding the value in area i for the Gi statistic, but
including it for the G�i statistic). These statistics may be computed for many
different distance bands. Formally, the Gi measure for observation (area) i can be
expressed as

GiðdÞ ¼
Pn

j 6¼i WijðdÞ zjPn
j6¼i zj

ð2:15Þ

with the summation in j exclusive of i. The G�i measure is given by

G�i ðdÞ ¼
Pn

j¼1 WijðdÞ zjPn
j¼1 zj

ð2:16Þ

except that the summation in j is now inclusive of i. The Gi statistic can be inter-
preted as a measure of clustering of like values around a particular observation i,
irrespective of the value in that area, while the G�i statistic includes the value within
the measure of clustering. A positive value indicates clustering of high values and a
negative value indicates a cluster of low values. It is interesting to note that G�i is
mathematically associated with global Moran’s I(d) so that Moran’s I may be
interpreted as a weighted average of local statistics (Getis and Ord 1992). A slightly
different form of the G-statistic was suggested by Ord and Getis (1995) where the
distributional characteristics are discussed in detail (see also Getis 2010).

Getis and Ord (1992), and Ord and Getis (1995) provide the expected values
and variances of the two statistics. Their distribution is normal if the underlying
distribution of the observations is normal. But if the distribution is skewed, the test
only approaches normality as the critical distance d increases, and does so more
slowly for boundary areas where there are fewer neighbours. In other words, under
these circumstances normality of the test statistic can only be guaranteed when the
number of j neighbouring areas is large. When n is relatively small, as few as eight
neighbours could be used without serious inferential errors unless the underlying
distribution is very skewed (Getis and Ord 1996). Hot spots identified by these
statistics can be interpreted as clusters or indications of spatial non-stationarity.

Local indicators of spatial association (LISA) statistics were derived by Anselin
(1995), with the motivation to decompose global spatial autocorrelation statistics,
such as Moran’s I and Geary’s c, into the contribution of each individual obser-
vation i ¼ 1; . . .; n: The local Moran statistic Ii for observation (area) i ¼ 1; . . .; n
is defined (Anselin 1995) as

Ii ¼ zi � �zð Þ
Xn

j2Ji

Wij zj � �z
� �2 ð2:17Þ

where Ji denotes the neighbourhood set of area i, and the summation in j runs only
over those areas belonging to Ji, �z denotes the average of these neighbouring
observations.
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It is evident that the sum of Ii for all observations i

Xn

i¼1

Ii ¼
Xn

i¼1

zi � �zð Þ
Xn

j¼Ji

Wij zj � �z
� �

ð2:18Þ

is proportional to the global Moran statistic I given by Eqs. (2.7) and (2.8).
The moments for Ii under the null hypothesis of no spatial association can be

derived using the principles outlined in Cliff and Ord (1981, pp. 42–46). For
example, for a randomisation hypothesis, the expected value is found as

E½Ii� ¼ �
1

ðn� 1Þ
~Wi ð2:19Þ

and the variance turns out to be

var ½Ii� ¼
1

ðn� 1Þ Wið2Þðn� b2Þ þ
2

ðn� 1Þ ðn� 2Þ WiðkhÞð2b2 � nÞ � 1

ðn� 1Þ2
~W2

i

ð2:20Þ

where

Wið2Þ ¼
Xn

j 6¼i

W2
ij ð2:21Þ

2WiðkhÞ ¼
Xn

k 6¼i

Xn

h6¼i

Wik Wih ð2:22Þ

~Wi ¼
Xn

j¼1

Wij ð2:23Þ

with b2 ¼ m4 m�2
2 , m2 ¼ Riðzi � zÞ2 n�1 as the second moment, and m4 ¼

Riðzi � zÞ4 n�1 as the fourth moment. A test for significant local spatial asso-
ciation may be based on these moments, although the exact distribution of such
a statistic is still unknown (Anselin 1995, p. 99).

Alternatively, a conditional random permutation test can be used to yield
so-called pseudo significance levels. The randomisation is conditional in the sense
that the value zi associated with area i is hold fixed in the permutation, and the
remaining values are randomly permuted over the areas. For each of these
resampled data sets, the value of the local Moran Ii can be computed. The resulting
empirical distribution function provides the basis for a statement about the
extremeness or lack of extremeness of the observed statistic Ii, relative—and
conditional on—the Ii-values computed under the null hypothesis.

A complicating factor in the assessment of significance is that the statistics for
individual locations (areas) will tend to be correlated whenever the neighbourhood
sets Ji and Jk of two areas i and k contain common elements. Due to this
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correlation, and the associated problem of multiple comparisons, the usual inter-
pretation of significance will be flawed. Furthermore, it is impossible to derive the
exact marginal distribution of each statistic, and the significance levels have to be
approximated by Bonferroni inequalities or following the approach suggested by
Sidák (1967). This means—as pointed out by Anselin (1995, p. 96)—that when the
overall significance associated with the multiple comparisons (correlated tests) is
set to a, and there are m comparisons, then the individual significance ai should be

set to either a=m (Bonferroni) or 1� ð1� aÞ1=m (Sidák). Note that the use of
Bonferroni bounds may be too conservative for local indicators of association.
If, for example, m ¼ n, then an overall significance of a ¼ 0:05 would imply
individual levels of ai ¼ 0:0005 in a data set with one hundred observations,
possibly revealing only very few if any significant areas. But since the correlation
between individual statistics is due to the common elements in the neighbourhood
sets, only for a small number of areas k will the statistics actually be correlated
with an individual Ii (Anselin 1995, p. 96).

Using the same notation as before, a local Geary statistic ci for each observation
i ði ¼ 1; . . .; nÞ may be defined as

ci ¼
Xn

j2Ji

Wij zi � zj

� �2 ð2:24Þ

where Ji denotes the neighbourhood set of area i. The ci statistic is interpreted in
the same way as the local Moran. The summation of the ci over all observations
yields

Xn

i¼1

ci ¼
Xn

i¼1

Xn

j2Ji

Wij zi � zj

� �2 ð2:25Þ

that is evidently proportional to the global Geary c statistic given by Eq. (2.9).
These LISA statistics, Ii and ci, serve two purposes. On the one hand, they may

be viewed as indicators of local pockets of non-stationarity, or hot spots, similar
to the Gi and G�i statistics. On the other hand, they may be used to assess
the influence of individual locations (observations) on the magnitude of the cor-
responding global spatial autocorrelation statistic, Moran’s I and Geary’s c.
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