

Núcleo de Economia Regional e Urbana da Universidade de São Paulo

The University of São Paulo Regional and Urban Economics Lab

THINK • STIMULATE • BRIDGE

Lecture 3: Introduction to GEMPACK

"Multi-regional Economic Modeling: Applications for Morocco"

October 10-13, 2017 – OCP Policy Center, Rabat

Eduardo A. Haddad and Vinicius Vale

The **Impact Project** started in 1975 as part of the Industries Assistance Commission (now Productivity Commission)

The aim of the Impact Project was to produce general tools of use to all economists. These include the ORANI model and GEMPACK software

GEMPACK development began in 1984.

The main developers of GEMPACK are Jill Harrison, Mark Horridge and Ken Pearson

Outline

✓ Introduction

How to carry out a simulation?

How to implement the SJ model in GEMPACK?

General purpose package for GE models, **not model specific**

Allows modelers to **concentrate on the economics** of their models instead of computing problems

Aims to make modelers more productive

Document models for others

GEMPACK is a suite of general-purpose economic modeling software especially suitable for general and partial equilibrium models.

It can handle a wide range of economic behavior and also contains powerful capabilities for solving intertemporal models

GEMPACK provides software for calculating accurate solutions of an economic model, starting from an algebraic representation of the equations of the model. GEMPACK provides:

- a) a simple language in which to describe and document the equations of your economic model;
- b) a program which converts the equations of your model to a form ready for running simulations with the model;
- c) options for varying the choice of exogenous and endogenous variables and the variables shocked;
- d) utility programs to assist in managing the database on which the model is based.

The (main) GEMPACK programs:

- > **WinGEM** windows interface to GEMPACK
- ViewHAR for looking in the data in a Header Array File
- ViewSOL for looking at Solutions files
- **RunGEM** for automating simulations with models
- TABmate text editor for developing TABLO Input files

Source-Code version

Fortran compiler

Model size limited only by memory

Executable-Image version

Can build and modify models

Medium size models

No Fortran compiler

Demonstration version

Can build and modify small models

Essentially free

Outline

Introduction

✓ How to carry out a simulation?

How to implement the SJ model in GEMPACK?

In this part we will explain some of the terms used in GEMPACK;

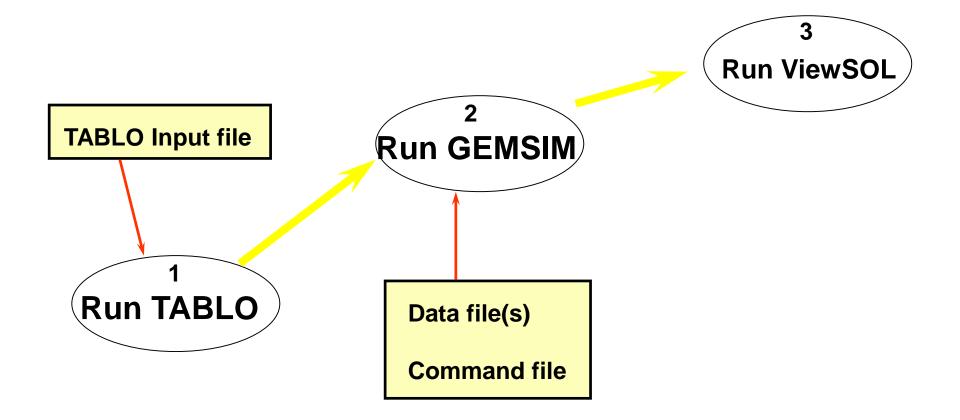
Implementation

Simulation

Levels and percentage-change variables

Write down equations in algebraic form

Collect data for initial solution


Construct TABLO Input file

A model is implemented in GEMPACK when:

- a) the equations describing its economic behavior are written down in an algebraic form following a syntax. (TABLO Input File)
- b) data describing one solution of the model are assembled to be used as a starting point for simulations (ViewHAR)

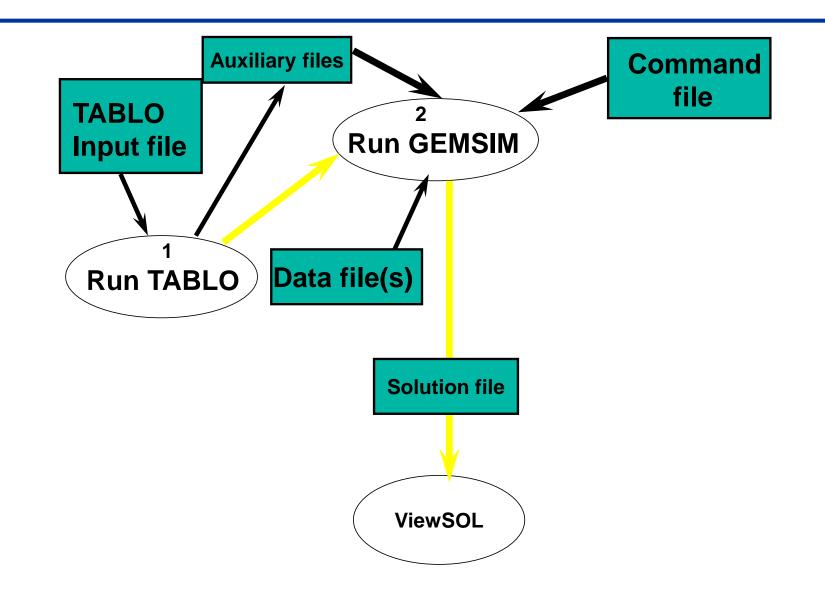
Program	Purpose
TABLO	Converts text file <i>TABLO Input file</i> into computer files called <i>GEMSIM Auxiliary files</i>
	e.g. converts SJ.TAB into SJ.GSS and SJ.GST
GEMSIM	Does the arithmetic, carries out simulations
	e.g. reads SJ data, calculates COEFFICIENTS etc.
	e.g. calculates results of simulation

Three GEMPACK Programs

Many simulations are the answer to "WHAT IF" question such as:

"If the government were to increase tariffs by 10 percent, how much different would the economy be in 5 years time from what it would otherwise have been?"

> Comparative-statics


- From the original solution supplied as the starting point, a simulation calculates a *new solution* to the equations of the model.
- Within GEMPACK, the results of a simulation are usually reported as percentage changes from the original solution.
- Solving models within GEMPACK is always done in the context of a simulation.

Simulation information

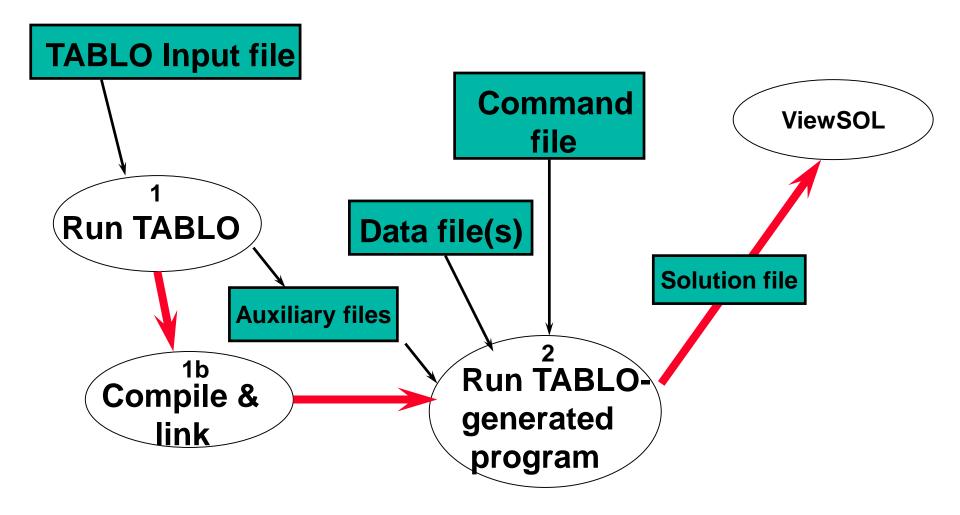


Figure 2.2.3: The Information Required to Specify a Simulation

The GEMSIM method

TABLO-generated program

- There is a specification of the values of certain variables ("the exogenous ones" and the software calculates the values of the remaining variables ("the endogenous ones").
- The new values of the exogenous variables are usually given by specifying the percentage changes (increases or decreases) from their values in the original solution given as part of the implementation.

- When the model is implemented, the equations may be linearized (that is, differentiated).
- The variables in these linearized equations are usually interpreted as percentage changes in the original variables.
- The original variables (prices, quantities, etc.) are referred as the **levels variables.**

The (usually nonlinear) equations relating these levels variables are called **the levels equations**.

> Levels equations:

D = PQ

The equation relates the dollar value, D, of a commodity to its price P (\$ per ton) and its quantity Q (tons).

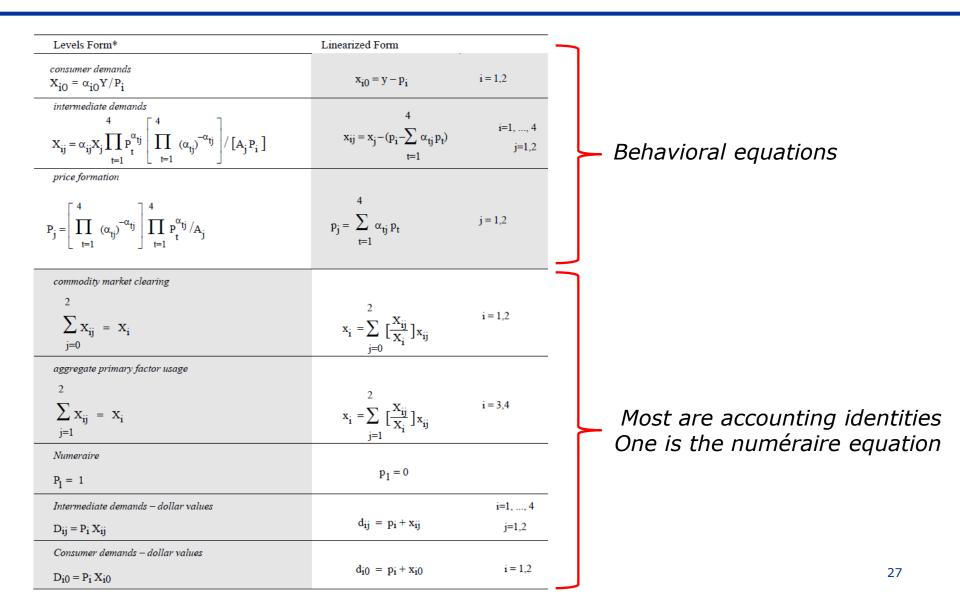
Linearized version:

$$p_D = p_P + p_Q$$

The percentage change p_D in the dollar value is equal to the sum of the percentage changes p_P, in the price, and p_Q, in the quantity.

- The data for a model often consists of input-output data (giving dollar values) and parameters (including elasticities).
- The data are usually sufficient to read off an initial solution to the levels equations (usually all basic prices are taken as 1 in the initial solution).

Outline


Introduction

How to carry out a simulation?

✓ How to implement the SJ model in GEMPACK?

- Stylized Johansen described in Chapter 3 of Dixon et al (1992) and explained by Prof. Eduardo Haddad (Lecture 2).
- Single country
- Two sectors "s1" and "s2" producing a single commodity (1, 2)
- One household sector (0)
- Two primary factors (3, 4)

Levels and linearized equations of the Stylized Johansen Model

GEMPACK variable	Meaning	DPPW Notation
Y PC(i) PF(f) XCOM(i) XFAC(f) XH(i) XC(i,j)	Value of household income Price of commodity i Price of factor f Supply of commodity i Supply of factor f Household use of commodity i Intermediate input of commodity i to industry j	Y P _i (i=1,2) P _f (f=3,4) X _i (i=1,2) X _f (f=3,4) X _{i0} (i=1,2) X _{ij} (i,j=1,2)
<pre>XF(f,j) Input of factor f to industry j X_{fj} (f=3,4;j=1,2) DVCOMIN(i,j) Dollar values for intermediate inputs (i,j=1,2) DVFACIN(f,j) Dollar values for factor use by industry(f=3,4;j=1,2) DVHOUS(i) Dollar values for household consumption (i=1,2)</pre>		

- Most of variables have one or more arguments (indicating sectors and/or factors).
- > They are **vector variables.**
- Variables which have no arguments ("Y" is the only one here) are referred to as scalar or macro variables.

- PC(i) is regarded as a vector variable with 2 components, one for each sector, namely PC("s1") and PC("s2").
- XF(f,j) is regarded as a vector variable with the following 4 components:
 - component 1 XF ("labor", "s1"): input of labor (factor 1) to sector 1.
 - component 2 XF ("capital", "s1"): input of capital (factor 2) to sector 1.
 - component 3 XF ("labor", "s2"): input of labor (factor 1) to sector 2
 - component 4 XF ("capital", "s2"): input of capital (factor 2) to sector 2.

- Corresponding to each of these variables, there is an associated percentage change variable.
- TABLO adds the prefix "p_" to the name of the levels variable to indicate a percentage change.
- For example, p_XF is the percentage change in the levels variable XF.

Parameters		DPPW Notation
ALPHACOM(i,j)	Commodity exponents in production function for sector j (E3.1.4)	ALPHA _{ij} (i,j=1,2)
ALPHAFAC(i,j)	Factor exponents in production function for sector j (E3.1.4)	ALPHA _{fj} (f=3,4; j=1,2)

Stylized Johansen equations in GEMPACK notation

(E1) p_XH(i) = p_Y - p_PC(i)	i in SECT [This is equation (E3.2.1) in DPPW]	
	p_PC(j)] i, j in SECT om equation (E3.2.2) for i=1,2 in DPPW. The luded because of equation (E3.2.3) in DPPW.]	→ SECT (1,2)
	$p_{PC}(j)$ f in FAC, j in SECT om equation (E3.2.2) for i=5,4 in DPPW. The cluded because of equation (E3.2.3) in DPPW.]	→ FAC (3,4)
<pre>(E4) p_PC(j) = SUM(i,SECT, ALPHACOM(i,j) SUM(f,FAC, ALPHAFAC(f,j))</pre>		
(E5) XCOM(i) = XH(i) + SUM(j,SECT, XC(i,	j)) i in SECT [This is equation (E3.1.6) in DPPW]	
<pre>(E6) XFAC(f) = SUM(j,SECT, XF(f,j))</pre>	f in FAC [This is equation (E3.1.7) in DPPW]	
(E7) PC("s1") = 1	[This is equation (E3.1.23) in DPPW]	
(E8) XC(i,j) = DVCOMIN(i,j) / PC(i)	i,j in SECT [This equation is not numbered in DPPW]	
(E9) XH(i) = DVHOUS(i) / PC(i)	i in SECT [This equation is not numbered in DPPW]	
<pre>(E10) XF(f,j) = DVFACIN(f,j) / PF(f)</pre>	f in FAC, j in SECT [This equation is not numbered in DPPW]	33

			Indus	stry	Households	Total Sales
			1	2		
Sectors	Commodity	1	4.0	2.0	2.0	8.0
	rs Commodity	2	2.0	6.0	4.0	12.0
Factors	Labor	3	1.0	3.0		4.0
	Capital	4	1.0	1.0		2.0
Total	Production		8.0	12.0	6.0	

TABmate is a text editor

TABmate colors items in the TAB file according to their function:

black for words that are part of the TABLO language;
green for variables and other items that are specific to this model;
blue for comments which GEMPACK ignores;
italics for strings that GEMPACK uses as labels or descriptions.

You might also see line numbers in the left hand margin.

(E1) p_XH(i) = p_Y - p_PC(i) i in SECT [This is equation (E3.2.1) in DPPW]
(E2) p_XC(i,j) = p_XCOM(j)	 [p_PC(i) - p_PC(j)] i, j in SECT [This is obtained from equation (E3.2.2) for i=1,2 in DPPW. The term p_PC(j) is included because of equation (E3.2.3) in DPPW.]
(E3) p_XF(f,j) = p_XCOM(j)	<pre>- [p_PF(f) - p_PC(j)] f in FAC, j in SECT [This is obtained from equation (E3.2.2) for i=3,4 in DPPW. The term p_PC(j) is included because of equation (E3.2.3) in DPPW.]</pre>
<pre>(E4) p_PC(j) = SUM(i,SECT, SUM(f,FAC,</pre>	ALPHACOM(i,j)*p_PC(i)) + ALPHAFAC(f,j)*p_PF(f)) j in SECT [This is equation (E3.2.3) in DPPW]
(E5) XCOM(i) = XH(i) + SUM	(j, SECT, XC(i,j)) i in SECT [This is equation (E3.1.6) in DPPW]
(E6) XFAC(f) = SUM(j,SECT,	XF(f,j)) f in FAC [This is equation (E3.1.7) in DPPW]
(E7) PC("s1") = 1	[This is equation (E3.1.23) in DPPW]
(E8) XC(i,j) = DVCOMIN(i,j) / PC(i) i, j in SECT [This equation is not numbered in DPPW]
(E9) XH(i) = DVHOUS(i) /	PC(i) i in SECT [This equation is not numbered in DPPW]
(E10) $XF(f,j) = DVFACIN(f,j)$	j) / PF(f) f in FAC, j in SECT [This equation is not numbered in DPPW]

EQUATION House

Household demand for commodity i
(all,i,SECT) XH(i) = DVHOUS(i) / PC(i);

Variable (GE 0) (all,i,SECT) XH(i) # Household
demand for commodity i #

Variable (GE 0) (all,i,SECT) DVHOUS(i)
Dollar value of household use of commodity i # ;

Variable (GE 0) (all,i,SECT) PC(i)
Price of commodity i

```
VARIABLE (DEFAULT = LEVELS) ;
EQUATION (DEFAULT = LEVELS) ;
COEFFICIENT (DEFAULT = PARAMETER) ;
FORMULA (DEFAULT = INITIAL) ;
```

```
SET SECT # Sectors # (s1-s2);
```

```
READ DVHOUS from FILE iodata HEADER "HCON";
FORMULA (all,i,SECT) PC(i) = 1.0;
FORMULA House # Household demand for commodity i #
(all,i,SECT) XH(i) = DVHOUS(i) / PC(i);
```

FORMULA & EQUATION House # Household demand for commodity i # (all,i,SECT) XH(i) = DVHOUS(i) / PC(i);

FILE iodata # input-output data for the model # ;

(E1) p_XH(i) = p_Y - p_PC(i)	i in SECT [This is equation (E3.2.1) in DPPW]
	$PC(i) - p_PC(j)$] i, j in SECT obtained from equation (E3.2.2) for i=1,2 in DPPW. The PC(j) is included because of equation (E3.2.3) in DPPW.]
[This is	$PF(f) - p_PC(j)$ f in FAC, j in SECT obtained from equation (E3.2.2) for i=3,4 in DPPW. The PC(j) is included because of equation (E3.2.3) in DPPW.]
<pre>(E4) p_PC(j) = SUM(i,SECT, ALPHAC SUM(f,FAC, ALPHAE</pre>	
(E5) XCOM(i) = XH(i) + SUM(j,SECI	r, XC(i,j)) i in SECT [This is equation (E3.1.6) in DPPW]
(E6) XFAC(f) = SUM(j,SECT, XF(f,j)) f in FAC [This is equation (E3.1.7) in DPPW]
(E7) PC("s1") = 1	[This is equation (E3.1.23) in DPPW]
(E8) XC(i,j) = DVCOMIN(i,j) / PC(i) i, j in SECT [This equation is not numbered in DPPW]
(E9) XH(i) = DVHOUS(i) / PC(i)	i in SECT [This equation is not numbered in DPPW]
(E10) XF(f,j) = DVFACIN(f,j) / PE	(f) f in FAC, j in SECT [This equation is not numbered in DPPW]

EQUATION(LINEAR) Price_formation
Unit cost index for industry j
(all,j,SECT) p_PC(j) =
SUM(i,SECT,ALPHACOM(i,j)*p_PC(i)) +
SUM(f,FAC,ALPHAFAC(f,j)*p_PF(f));

```
Variable (GE 0) (all,i,SECT) PC(i)
# Price of commodity i #;
```

```
Variable (GE 0) (all,f,FAC) PF(f)
# Price of factor f #;
```

COEFFICIENT (all,i,SECT)(all,j,SECT) ALPHACOM(i,j)
Share of intermediate use of commodity i in costs of
industry j #;

COEFFICIENT (all,f,FAC)(all,j,SECT) ALPHAFAC(f,j)
Share of factor input f in costs of industry j #;

```
FORMULA (all,i,SECT)(all,j,SECT) ALPHACOM(i,j) =
DVCOMIN(i,j) / [SUM(ii,SECT,DVCOMIN(ii,j)) + SUM
(ff,FAC,DVFACIN(ff,j))];
```

```
FORMULA (all,f,FAC)(all,j,SECT) ALPHAFAC(f,j) =
DVFACIN(f,j) / [SUM(ii,SECT,DVCOMIN(ii,j)) + SUM
(ff,FAC,DVFACIN(ff,j))];
```

<u>Golden rule</u>: each entity (VARIABLE, COEFFICIENT, etc.) must be declared on the TABLO Input file before it is used in EQUATIONs and FORMULAs! EQUATION FORMULA READ VARIABLE COEFFICIENT SET FILE

Chapters 3 and 4 of GEMPACK Document GPD-2!

SJ.tab

ve Reload Print Cut Copy Paste Undo Check Next Warn Gloss See Log STI Code CMF		
Mixed TABLO Input file for the Stylized Johansen model	! ! ! !	
following the description in Chapter 3 of the text "Notes and Problems in Applied General Equilibrium Economics" by P.Dixon, B.Parmenter, A.Powell and P.Wilcoxen [DPPW] published by North-Holland 1992.	! ! ! !	
Revised February 1998 to include "GE 0" qualifiers to take advantage of Release 6.0 of GEMPACK which can then ensure that these never become negative in simulations carried out with user-specified accurary.		
Text between exclamation marks is a comment. Text between hashes (#) is labelling information.	1 1	
Set default values	! ! !	

- 1. Starting WinGEM
- 2. Preparing a directory for Model SJ
- 3. Setting the working directory
- 4. Editing text files in WinGEM
- 5. Looking at the data directly (VIEWHAR)
- 6. Simulations with the SJ model

In Windows, double click on the WinGEM icon to start GEMPACK.

> This should give the main WinGEM menu

WinGEM - GEMPACK for Windows

File	<u>S</u> imulation	HAFiles	Other <u>T</u> asks	Programs	<u>O</u> ptions	Window	Help	
------	--------------------	---------	---------------------	----------	-----------------	--------	------	--

To keep all example files for the SJ model together in one area, we should create a separate directory \SJ for these files and how to copy the relevant files into this directory. Choose a working directory (for SJ model the working directory needs to be the directory \SJ you have just created)

To set this, first click on **File** in the main WinGEM menu

In the drop-down menu, click on the menu item

Change both default directories...

So the sequence of clicks (first File then Change both default directories) is

File|Change both default directories...

The input-output data used in SJ model are contained in the data file **SJ.DAT**

This is a special GEMPACK binary file – called Header Array file

Thus to look at SJ.DAT you have to use a special program to read Header Array files, called **ViewHAR**

HA Files | View VIEWHAR

The viewHAR window will appear

Click on **File|Open...** and selected the file SJ.DAT

This will open the file SJ.DAT and show the contents on the screen

Each of the rows corresponds to a different array of data on the file. Look at the column under the heading Name to see what data are in these arrays.

WinGEM - GEMPACK for Windows									
<u>F</u> i	le <u>S</u> imulatio	on H <u>A</u> f	iles Other <u>t</u> asks	<u>P</u> rograms	<u>Options</u>	<u>W</u> indo	ow <u>H</u> elp		
₽ SJ.HAR in C:\GP\SJ									
<u>F</u> i	<u>File Contents Edit Sets Export Import History Search Aggregation Programs H</u> elp								
	Header	Туре	Dimension	Coeff	To	otal	Name		
1	CINP	RE	SECT*SECT	DVCO	MIN 1	4,0	Intermediat	te inputs	of commodities to industries - dollar values
2	FINP	RE	FAC*SECT	DVFAC	CIN 6	,00	Intermediat	te inputs	of primary factors - dollar values
3	HCON	RE	SECT	DVHO	US 6	,00	Household	use of c	ommodities - dollar values

The first array is the "Intermediate inputs of commodities to industries – dollar values"

The Header CINP is just a label for this array (*headers can have up to 4 characters*).

The array is of Type RE. The R means this is an array of real numbers. The E means that this array has set and element labeling.

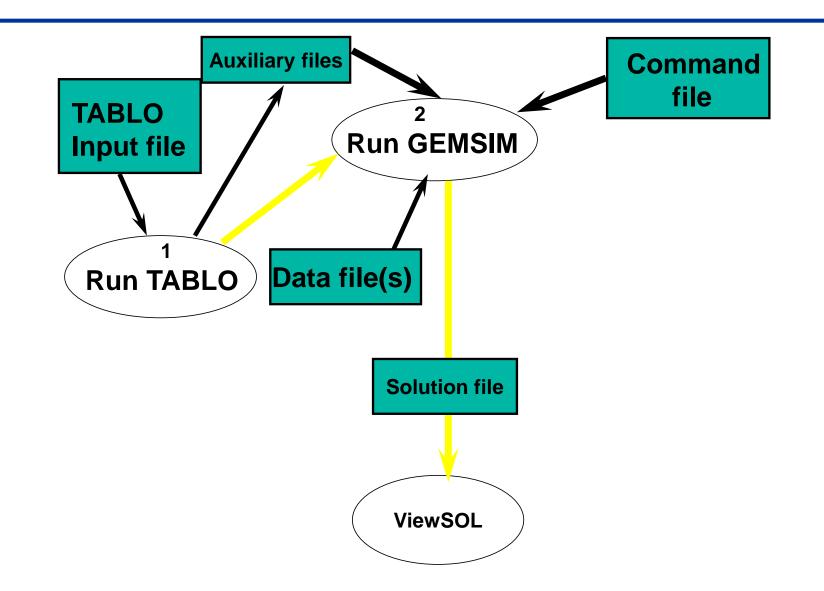
Double click on CINP to see the numbers in this array.

5. Looking at the data directly (VIEWHAR)

WinGEM - G	WinGEM - GEMPACK for Windows									
<u>F</u> ile <u>S</u> imulatio	<u>File S</u> imulation H <u>A</u> files Other <u>t</u> asks <u>P</u> rograms <u>O</u> ptions <u>W</u> indow <u>H</u> elp									
🗭 SJ.HAR in	C:\GP\SJ									
<u>File</u> <u>C</u> onten	ts <u>E</u> dit Se <u>t</u>	s E <u>x</u> port I <u>n</u>	port H <u>i</u> story	<u>S</u> earch	Aggregation	<u>P</u> rograms	<u>H</u> elp			
None 🗸	6 ~									
DVCOMIN	1 s1	2 s2	Total							
1 s1	4,000000	2,000000	6,000000							
2 s2	2,000000	6,000000	8,000000							
Total	6,00000	8,000000	14,000000							

Compare this numbers with the Input-Output data for SJ model.

To return to Contents Screen, click on **Contents** in the ViewHAR menu.


> We have to choose a closure:

- Supply of the two factors, labor and capital, are the exogenous variables

Thus we will specify the percentage changes in the variable XFAC, namely p_XFAC, and solve the model to find the percentage changes in all the other variables.

- For this simulation, we increase the supply of labor by 10 per cent and hold the supply of capital fixed
- The starting point for any simulations with Stylized Johansen model are:
 - the TABLO Input file (called SJ. TAB) and
 - the data file (called SJ.DAT)

The GEMSIM method

From the WinGEM menu at the top of the screen choose **Simulation**.

In the drop-down menu the choices are:

Win	WinGEM - GEMPACK for Windows									
<u>F</u> ile	Simulation	H <u>A</u> files	Other <u>t</u> a	asks	<u>P</u> rog	rams	<u>O</u> ptions	<u>W</u> indow	<u>H</u> elp	
	<u>T</u> ABLO Imple Compile & <u>L</u> TAB <u>m</u> ate Im	ink	2	Shift+	۰T					
	<u>R</u> un TG prog	gram	S	Shift+	R					
	<u>G</u> EMSIM Solve		S	Shift+	G					
	SAGEM Johansen Solve									
	View Solution (ViewSOL))L) S	Shift+	-S					
	<u>A</u> nalyseGE		S	Shift+	A					
	GEMPIE Prin	t Solution	5	Shift+	-P					

The items from this menu you will be using in this simulation are:

WinGEM - GEMPACK for Windows

<u>File</u> <u>Simulation</u> <u>HA</u> files Other <u>tasks</u> <u>Programs</u> <u>Options</u> <u>Window</u> <u>Help</u>

TABLO Implement	Shift+T
Compile & <u>L</u> ink	
TAB <u>m</u> ate Implement	
<u>R</u> un TG program	Shift+R
GEMSIM Solve	Shift+G
SAGEM <u>J</u> ohansen Solve	
View <u>S</u> olution (ViewSOL)	Shift+S
<u>A</u> nalyseGE	Shift+A
GEMPIE Print Solution	Shift+P

There are three steps involved in carrying out a simulation using GEMPACK:

STEP 1 – Implement the model (TABLO)

STEP 2 – Solve the equations of the model (GEMSIM)

STEP 3 – View the results (GEMPIE and VIEWSOL)

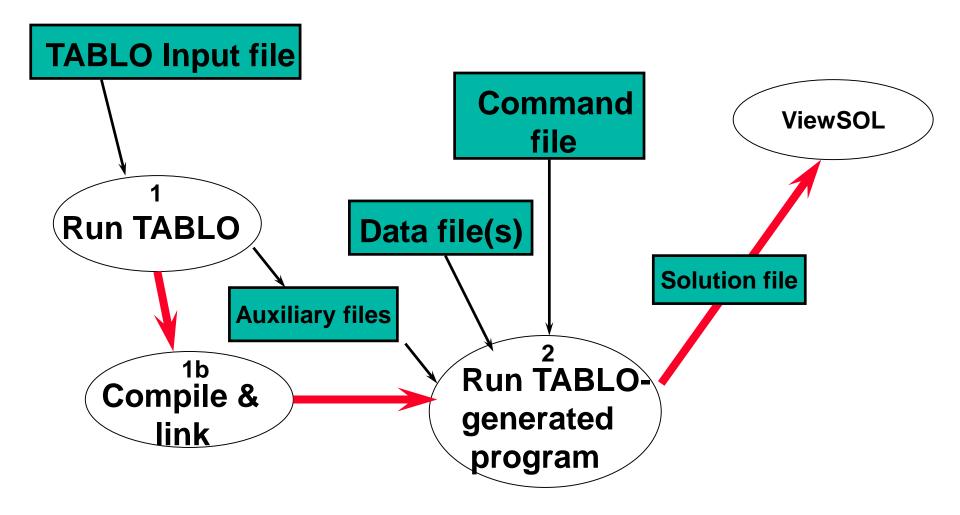
WinGEM will guide you through these steps and indicate what to do next.

<u>Step 1</u>:

Simulation / TABLO Implement... TABLO Options... (PGS) Go to GEMSIM

<u>Step 2</u>:

File SJLB.CMF


<u>Step 3</u>:

GEMPIE versus VIEWSOL

The updated data – another result of the simulation

File *SJLB.UPD*

TABLO-generated program

From the WinGEM menu at the top of the screen choose Simulation.

In the drop-down menu the choices are:

WinGEM - GEMPACK for Windows									
<u>F</u> ile	Simulation	H <u>A</u> files	Other <u>t</u>	asks	<u>P</u> rog	rams	<u>O</u> ptions	<u>W</u> indow	<u>H</u> elp
	<u>T</u> ABLO Imple Compile & <u>L</u> TAB <u>m</u> ate Im		Shift+T						
	<u>R</u> un TG program <u>G</u> EMSIM Solve			Shift+	R				
			:	Shift+	G				
	SAGEM <u>J</u> oha	nsen Solv	e						
View Solution (ViewSOL))L)	Shift+	S					
	<u>A</u> nalyseGE		:	Shift+	A				
	GEMPIE Prin	t Solution		Shift+	-P				

The items from this menu you will be using in this simulation are:

WinGEM - GEMPACK for Windows

<u>File</u> <u>Simulation</u> <u>HA</u> files Other <u>tasks</u> <u>Programs</u> <u>Options</u> <u>Window</u> <u>Help</u>

TABLO Implement	Shift+T
Compile & <u>L</u> ink	
TAB <u>m</u> ate Implement	
<u>R</u> un TG program	Shift+R
GEMSIM Solve	Shift+G
SAGEM Johansen Solve	
View <u>S</u> olution (ViewSOL)	Shift+S
<u>A</u> nalyseGE	Shift+A
GEMPIE Print Solution	Shift+P

In the TABLO-generated program method, the GEMPACK program TABLO is used to convert the algebraic equations of the economic model into a Fortran program specific to your model.

This Fortran program (which is referred to as the TABLO-generated program or TG Program in the menu) is compiled and linked to a library of GEMPACK subroutines.

The executable image of the TABLO-generated program produced by the compiler is used to run simulations on the model.

There are three steps involved in carrying out a simulation using GEMPACK:

- STEP 1 Implement the model
- STEP 2 Solve the equations of the model
- STEP 3 View the results

WinGEM and **RunGEM** will guide you through these steps and indicate what to do next.

STEP 1 – Implement the model SJ using TABLO

Step 1 (a) – Run TABLO to create the TABLOgenerated program

The TABLO Input file is called **SJ.TAB**. It contains the theory of the SJ model.

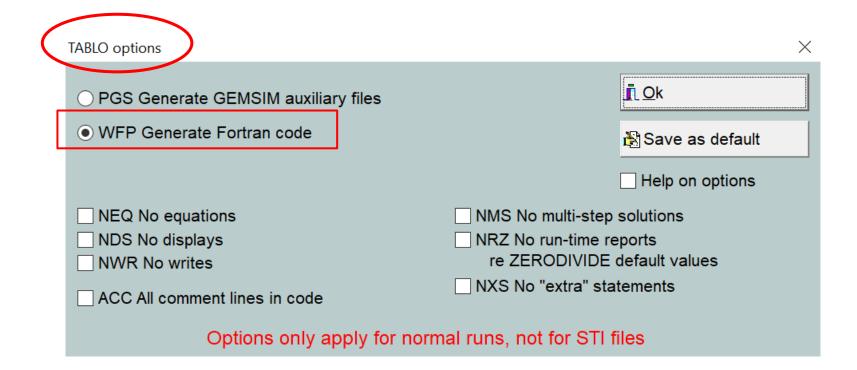
Choose:

Simulation | TABLO Implement....

6. TABLO-generated program

A window for TABLO will appear:

TABLO		_		\times
<u>File</u> <u>O</u> ptions				
😤 🗅 🖸 🖉 🔁 🐼	îĻî	 FORTRAN GEMSIM 		
TABLO Input file: Select	<u>E</u> dit	Ru	n	
			<u>H</u> el	р

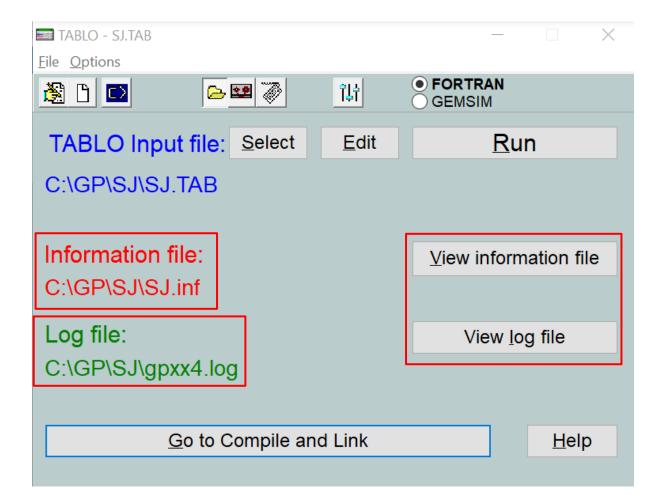

Click on the **Select** button to select the name of the TABLO Input file SJ.TAB. This is all TABLO need to implement a model.

In the menu for the TABLO window, select **Options** menu item. Then in this menu choose

TABLO Options.....

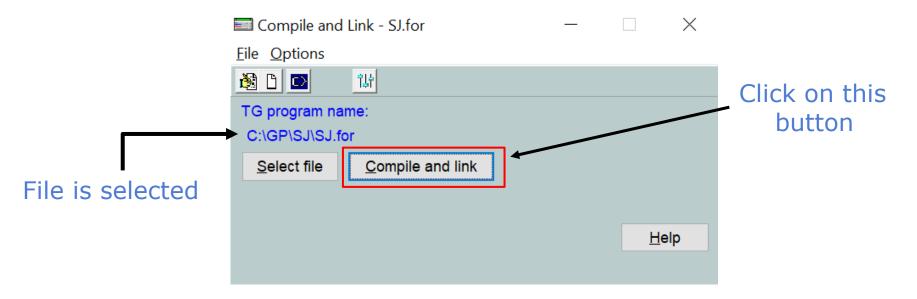
A new TABLO Options window will appear...

6. TABLO-generated program


We will choose the option **WFP** because we want you to create the TABLO-generated program.

Then click on **Ok** button to return to the TABLO window.

Click on **Run** button


The program runs TABLO in a DOS box and when complete, returns to the TABLO window with the names of files it has created: the information file SJ.INF and Log file.

To look at files click on **View** buttons beside them.

Step 1 (b) Compile and Link the TABLO-generated Program

Click on the **Go to compile and Link** button at the button of the TABLO window to run the Fortran compiler.

The compiler converts the Fortran file SJ.FOR into the executable image SJ.EXE.

When finished click on the button Go to 'Run TG program' or go to RunGEM module

🖬 Compile and Link - SJ.for — 📃 🗙	
<u>File</u> <u>Options</u>	
	Click on this
TG program name:	button or go
C:\GP\SJ\SJ.for	to RunGEM
Select file Compile and link View Log file	module
<u>G</u> o to 'Run TG program' <u>H</u> elp	

STEP 2 – Solve the equations of the model

Starting RunGEM

Double click on RunGEM icon to start RunGEM module. This is the first part of RunGEM

To change from Title to Model/Data for exemple is only necessary to click on the names.

Select the Model:

Go to **Model/Data** page by clicking on its tab. Click on button **Change Model** do select your model. Select the file SJ.EXE.

💕 RunGE	M - SJ						
<u>F</u> ile <u>C</u> op	y <u>V</u> iew <u>T</u> ools <u>O</u> p	otions <u>P</u> rogram	ns <u>H</u> elp				
Title	Model/Data	Closure	Shocks	Output files	Solve	Results	
Mode	I: C:\GP\SJ\SJ.	0.00					
Woue	I. C.IGF 100100.	eve					
	<u>C</u> hange Mode	I					
Input	Data Files:						
mpac	Data Photo						

Right click on any line below to specify or change the names of these files

File iodata = C:\GP\SJ\SJ.HAR ; ! input-output data for the model

Select the Data File:

In the white box headed **Input Data File** a single line of text will appear.

Input Data Files:

Right click on any line below to specify or change the names of these files

File iodata = C:\GP\SJ\SJ.HAR ; ! input-output data for the model

Select the Data File:

Select the line (in blue) by right clicking on it

Select on the menu the option *Select or change the file name*

Input Data Files:		
Right click on any line below to specify or chan	ge the names of these files	
File iodata = C:\GP\SJ\SJ.HAR ; ! input-output d	ata for the model	
	<u>Select or change the file name</u>	
	<u>V</u> iew this file	
	<u>T</u> ell me more about this file	

Select the Data File:

Click on the *save as* button

🚰 Save Data Fi	ile Names			×
Save <u>i</u> n:	: 📕 SJ	~	6 🌶 📂 🔜 🗸	
Quick access	Name	^	Date modified 21/09/2017 09:57	Type MDF File
Desktop Libraries				
This PC				
	<			>
Network	File <u>n</u> ame:	*.MDF	~	<u>S</u> ave
	Save as <u>t</u> ype:	Model data files	~	Cancel Help

Load Closure:

Select the *Closure* link

Select the link *Load Closure* (as you have a closured saved in the SJ directory the GEMPACK will automatic open it).

If you do not have the file .CLS you can type the closure and save it.

exogenous p_FAC;

rest endogenous;

Load Closure:

🚰 Closure File						×		Load Closure
Look in:	📕 SJ			~	G 🗊 🖻 🖽 🗸			Save Closure
*	Name SJ.CLS	^			Date modified 19/08/1998 02:55	Type CLS File		
Quick access					15,00,1550 02.55	020 1110		Check Closure
Desktop								
Libraries								
This PC								
	<					>		
Network	File <u>n</u> ame:	*.cls			~	<u>O</u> pen	1	
	Files of type:	Closure File	es		~	Cancel		
						Help		

Load Closure:

You also have the opportunity to check the closure.

Thus click on the button **Check Closure** and RunGEM will check if this is a valid closure for the SJ model

Select the Shocks:

Click on **Shocks** tab, and in the box labeled **Variable to shock**, click on the small arrow on the right hand side to get a drop-down list of exogenous variables. Select the Shocks:

For the closure chosen in the SJ model we have only one exogenous variable (p_XFAC).

Click on this line to select p_XFAC and in the *Elements to Shock* box click on the arrow and select "labor".

Thus in this simulations you are shocking just one component of p_XFAC, the labor supply.

Type in the next box the value of shock – 10.

Click on the button **Add to shock list**

RunGEM - SJ

<u>File</u> <u>C</u> opy	/ <u>V</u> iew <u>I</u> ools <u>O</u> p	tions <u>P</u> rogram	ns <u>H</u> eip						
Title	Model/Data	Closure	Shocks	Output files	Solve	Results			
			ble to Shoc		/=XFAC		~	Total demand fo Dimensions: FA	or (or supply of) factor f C
			nts to Shoc lue of Shoc				~		Type of S
Shoc	k p_XFAC("lab	or") = 10;	_						
	Add to Shoc			Load File of S	Shocks		Save File	of Shocks	Clear Shoc

Shock p_XFAC("labor") = 10;

Output Files:

Click on **Output files** tab

To change the names of the output files, click (left click on this time) on the first line in the lower box:

Solution file = sim1.

Change the name of the Solution file to SJLB.SL4

RunGEM - SJ Eile Copy View Tools Options Programs Hel	-				
Title Model/Data Closure Sho		es Solve	Results		
	Directo	ry where outp	ut files go (by defaul	t) : Change	
			с	::\GP\SJ	
	🚰 Output File				×
	Save in:	SJ		✓ ③ Ď ▷ ▼	
Left click on any line below to change Solution file = sim1 ; Updated file iodata = sim1.upd ;		lame ≪sjlb.sl4 ≪Sjlnlb.sl4	^	Date modified 27/09/2017 15:49 24/10/2000 08:08	Type GEMPACK GEMPACK
	 				>
			sim1.sl4	Υ.	<u>S</u> ave
	Si	ave as <u>t</u> ype:	Solution Files	~	Cancel
					<u>H</u> elp

<u>Carry out a simulation</u>:

Select the next page **Solve** and type in some verbal description to say

SJ. Standard closure – 10 percent increase in the labor supply

You need to select the solution method and steps.

Click on the **Change** button to the right of the text "Solution method". Carry out a simulation:

Select "Gragg's method with 2,4,6 steps calculations [One subinterval, not automatic accuracy]

Click on the **Solve** button and the RunGEM will calculate a solution.

e	Model/Data	Closure	Shocks	Output files	Solve	Results		
	Solution I	method :	Change					
J	ohansen: 1 ste	ep						
	Verbal Des	cription:	SJ. Standa	ard closure -	10 perc	ent increas	e in the	labor supply
	Solve			ose Solution Metho lethod) Johansen Deule umber of solutions) 1 solution) 2 solutions) 3 solutions Sub-intervals 1	r		× point	

Look at the results:

Click on **Results** tab

💕 RunGEM - SJ

<u>File Copy View Tools Options Programs Help</u>

The Tob) Then I	oons <u>o</u> ptions Fieg		Te de					
Title Model	Data Closur	e S	hocks (Dutput files	Solve	Results		
Everything ~	V		Description	1 (Sim)	\sim			
Variable	Size	No.	Name					
Macros	1	1	Scalar v	ariables (jus	st one ele	ement)		
p_DVCOMIN	SECT*SECT	1	Dollar va	alue of input	s of com	modity i to	industry j	
p_DVFACIN	FAC*SECT	1	Dollar va	alue of facto	r f used	in industry	j	
p_DVHOUS	SECT	1	Dollar va	alue of hous	ehold us	e of comm	nodity i	
p_PC	SECT	1	Price of	commodity	i			
p_PF	FAC	1	Price of	factor f				
p_XC	SECT*SECT	1	Intermed	diate inputs	of comm	nodity i to i	ndustry j	
p_XCOM	SECT	1	Total der	mand for (or	supply	of) commo	dity i	
p_XF	FAC*SECT	1	Factor ir	nputs to indu	ustry j			
p_XFAC	FAC	1	Total der	mand for (or	supply	of) factor f		
p_XH	SECT	1	Househo	old demand	for com	modity i		

- 2.1.12. Different closures and/or shocks
- 2.1.13. Correcting errors in TABLO Input files
- 2.1.15. Creating the base data header array file
- 2.1.17. Condensing the model

Bonus. Sensitivity analysis to alternative functional forms to intermediate demands equations (Leontief versus Cobb-Douglas versus CES – sigma = 2)