Input-Output Analysis : Foundations and Extensions

AppendixA Matrix Algebra for
Input—-Output Models

Al Introduction

Amatrix is acellection of elements arranged ina grid — a pattern of rows and columns. In
all cases that will be of interest to the topics in this book, the elements will be numbers
whose values either are known or are unknown and to be determined. Matrices are
defined in this “rectangular”™ way so that they can be used to represent systems of linear
relations among variables. which is exactly the structure of an input—output model.

The general case, then. will be a matrix with m rows and n columns. Ifm = 2 and
i = 3 and using double subscript notation. ayy, to denote the element in row § and
column § of the matrix, we have

ap| @iz a3
R |: 112 l_.i|
a1 a31 a4y
A particular example of such a matrix might be

21 3
M_|:c£ﬁ ili|

These are said to be 2 « 3 (read "2 by 3"} matrices or matrices of dimension 2 by 3.

Dimensions are often denoted in parentheses underneath the matrix, asin M .
(2x3)

When s = n the matrix is sguare; in this case it is ofien referred to as a matrix of
ander m {or of erder n, since they are the same). If m = | (a matrix with only one row)
it is called a row vecior; if n = | (a matrix with only one column) it is called a column
veector.! We adhere to the convention of using upper-case bold letters for matrices.
lower-case bold letters for vectors, and italicized letters for elements of matrices and
vectors. (In matrix algebra, an ordinary number is called a scalar.)

! The ultimate in shrinkage is when or = 0 = 1. a matrix with only onc clement. These will not be needed for
input—output models.

638

Miller, Ronald E.; Blair, Peter D.. Input-Output Analysis : Foundations and Extensions.
Cambridge, , GBR: Cambridge University Press, 2009. p 688.
http://site.ebrary.com/lib/mitlibraries/Doc?id=10329730&ppg=722

Copyright © 2009. Cambridge University Press. All rights reserved.

http://site.ebrary.com.libproxy.mit.edw/lib/mitlibraries/docPrint.action?en...

May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

1of 14

04/01/2011 17:22



Input-Output Analysis : Foundations and Extensions

2 of 14

A3 Matrix Operations: Multiplication HEY

A.2  Matrix Operations: Addition and Subtraction

A21  Addition
Addition of matrices, say A+ B. is accomplished by the simple rule of adding elements
in corresponding positions. This means ay + by for all § and j: and this, in tum, means

that only matrices that have exactly the same dimensions can be added. Given M.

13
gbove,and N = |: b2 i|,their sum, 8 = M + N, will be

(Ix3) 321
33 6
ST 7813

(]

A2 Subfraction

Subtraction is defined in a completely parallel way, namely subtraction of elements in
corresponding posifions. So, again, only matrices of exactly the same dimensions can
be subtracted. For example, IV = M — N will be

p =[1-10
axm L1041
A23  Equality

The notion of equality of two (or more) matrices is also very straightforward. Two
matrices are equal if they have the same dimensions and if the elements in corresponding
positions are equal. So A = B when ay = by;. for all { and j.

A24  The Null Matrix

A zero in ordinary algebra is the number which, when added to (or subtracted from)
another number leaves that number unchanged. The completely parallel notion in matrix
algebra is a null matrix, simply defined as a matrix containing only zeros. Define
0= [ g g gi|:thenit is obvious that M +0 =M — 0 = M.

A.3  Matrix Operations: Multiplication

A3T Multiplication of @ Matrix by a Number
If a matrix is multiplied by a number (called a scalar in matrix algebra), each element
in the matrix 1s simply multiplied by that number. For example

42 6
2M=[s 12 24}

A32  Multiplication of a Mairix by another Matrix
Multiplication of two matrices is defined in what appears at first to be a completely
illogical way. But we will see that the reason for the definition is precisely because
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of the way in which matrix notation is used for systems of linear relations. especially
204

linear equations. Using M, again. and a 3 < 3matrix Q = | 1 1 2 |. the product

345

P = M. 15 found as

.
P_[zl 1} T?; _[|41325]
o2l o, S0 54 88

This comes from

d+14+9 O+1412y (E+2+415)
(B+6+36) (04+6448) (164 12 4 60)

The rule is: for element py in the product. go acress veow § in the matnx on the left
{here M} and down cofumn f in the matrix on the right (here Q), multiplying pairs of
elements and summing. So. for p2; we find. from row 2 of M and column 3 of Q.
(A4 +06002) + 1205y = (16 + 12 + 60) = 88. In general, then. for this example

Py = mpgj + mpgy +magy (0= 1.2 j=1,2.3)

This definition of matrix multiplication means that in order 1o be conformable for
mudtiplication the number of columns in the matrix on the left must be the same as
the number of rows in the matrix on the right. Look again at gy above: for the three
elements in (any) row § of M —»;.miz. and w5 — there must be three “corresponding™
elements in (anv) column | of Q —gij. g2, and g37.

The definition of matrix multiplication also means that the product matrix, P, will
have the same number of rows as M and the same number of columns as Q. In general.

P = M Q (A1)
{mn) {mrh {rum)

It also means that, in general, order of multiplication makes adifference. In this example.
the product the other way around, QM. cannot even be found. since there are three
columns in @ but only two rows in M.~ For that reason, there is language 10 describe
the order of multiplication in a matrix product. For example, in P = MQ, M is said 1o
premudtiply Q (or to multiply Q on the left)y and, equivalently, Q is said to postmuldtiply
M {or to multiply M on the right).

A.3.3  The tdeniity Mairix

In ordinary algebra. 1 is known as the identity element for multiplication. which means
that a number remains unchanged when multiplied by it. There is an analogous concept
in matrix algebra. An identity matrix is one that leaves a matrix unchanged when the
matrix is multiplied by it.

2 Try 1o cary out the multiplication in the order QM 1o casily see where the trouble arises,
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A5 Hepresentation of Linear Equation Systems 6ol

21 3

4612
remained unchanged? Denote the unknown matrix by I (this is the standard notation
for an identity matrix}; we want MI = M. We know from the rule in (A1) that I must
be a 3 = 3 matrix; it needs three rows to be conformable to postmultiply M and three
columns because the product. which will be M with dimensions 2 by 3, gets its second
dimension from the number of columns in L. The reader might try letting Ibe a3 = 3
matrix with all 1's. It may seem logical but it is wrong. In fact, the only I for which
Fynn’l

Lo

MI=Mwillbel; = | @ 1 0 |.The reader should try this and other possibilities, to
ool

be convinced that only this matrix will do the job. (Subscripts are often used, as here,

to indicate the order of the identity matrix.}

An identity matrix is always square and can be of any size to satisfy the conforma-
bility requirement for the particular multiplication operation in which it appears. It has
1's along its main diggonal, from upper left to lower right, and 0's everywhere else.
We could find another identity matrix by which to premultiply M so that it remains

[fweuse M = } . by what matrix could M be postmultiplied so that it

unchanged. In this case we need the 2 x 2 identity matrix Iz = |: [; ?i|

A4 Matrix Operations: Transposition

Transposition is a matrix operation for which there is no parallel in ordinary algebra. It
plays a useful and important role in certain input—output operations. The franspoese of
an m = n matrix M, denoted M, is an r > m matrix in which row { of M becomes column
i of M'. (Sometimes M’ or M7 are used to denote transposition.} For our example

24—|
Y

Notice that the transpose of an n-element column vector (dimensions n = 1) is an
n-element row vector (dimensions 1 » n).

A useful result, for matrices that are conformable for multiplication, is that (AB) =
B'A". The reader can easily see why this is the case by examining a small general

ay a4 bu bu
- 3 3

example with, say, A = | 10 “12 5 apd B = | By o
y 2] daa dag

o b3y b

A.5  Representation of Linear Equation Systems
Here are two linear equations in two unknowns, x) and x;:

)+ =10

L
Sx; + Ar = 26 (A2)
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Define A as a 2 » 2 matrix that contains the coefficients multiplying the x's in exactly
the order in which they appear, so
21
A [ 3 3]

Define a two-element column vector, x, containing the unknown x"s and another two-
element column vector, b, containing the values on the right-hand sides of the equations
exactly in the order in which they appear. namely”

X 1
x=|:..__::| and h=|:2ﬁ}

Then, precisely because of the way in which matrix multiplication and matrix equality
are defined, the equation system in (4.2} 1s compactly represented as

Ax=h 1A3)

[Writing out the system represented in (A.3) will show exactly why this is true. |

In ordinary algebra. when we have an equation like 3x = 12, we “solve” this equation
by dividing both sides by 3 — which is the same as multiplying both sides by (1/3), the
reciprocal of 3 (sometimes denoted 3 -l multiplication of a number by i1s reciprocal
generates the identity element for multiplication. So, in more detail, we go from 3x = 12
to v =4 in the logical sequence

r=12= (133 = (/2 or (3 =312l =2 (Ix=4=x=4

In ordinary algebra the transition from 3x = 12 tox = 4 is virtwally immediate. The
point here is to set the stage for a parallel approach 1o systems of linear eguations, as
in (A2

Given the representation in (A_1), it is clear that a way of “solving™ this system for
the unknowns would be to “divide™ both sides by A. or. alternatively, multiply both
sides by the “reciprocal” of A. Parallel to the notation for the reciprocal of a number.
this is denoted A " If we could find such a matrix, with the property that (A~ hiar=1
(the identity element for matrix multiplication). we would proceed in the same way.
namely

Ax=b=(A " Ax=A " bh=Tlx=A"'"b=x=A""b
and the values of the unknowns, in x. would be found as the matrix operation in which
the vector b is premultiplied by the matrix A—!, which is usually called the inverse
of A

* The wsual convention is to define all veclors us column veclors (as hered. se row veciors are formed by
Irunsposition.
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Ah Malrix Operations: Division au3

A6 Matrix Operations: Division

In matnx algebra, “division” by a matrix is represented as multiplication by the inverse, '

Finding inverses can be a very tedious mathematical procedure, but modern computers
do it very quickly, even for relatively large matrices. Even though this can easily be
done with computer software, we examine a few matrix algebra definitions involving
determinants and their role in inverses in order to provide a rudimentary understanding
of the important concept of a singnlar matrix — one that has no inverse. { The reader unin-
terested in mathematical details can skip directiv 1o the result on the general definition
of an imverse. )

Determinant of a matrix: the 2 = 2 case

. o . i aip @2

A determinant is & number associsted with any square matris, For A = [ :|
471 o33

the determinant, |Al. 15 defined as [A| = anaz — aizen. Unfortunately, determinants

of larger matrices cannot be found by obvious extensions of this simple expression, and
additionzl definitions are needed — specifically minors, cofactors and adjoints.

Minor af an elemens. The minor of an element @ in a square matrix A (denoted r;) is
the determinant of the matrix remaining when row ¢ and column ; are removed from

A. 5o the »° minors of the elementsin A will be determinants of (n — 1} = {n— 1)
I

matrices.

Cefactor of an element. The cofacior of an element a;; in a square matnx A {denoted
Ay) is defined as Ay = (— 1)y When ¢ + 7 is an even number, Ay = mj;, when
i + 4 is an odd number, Ay = —m;;.

Determinant of a matrix: the general case

For A .!A| canbe found as

(mxar

(o) |A]l = ¥ agAy (For any 7) or (b) |A| =} ayAy (for any j).
i=1 i=l

In words: |A| can be found by summing the products of elements and their corresponding
cofactors in any row [from ()] or any column [from (bj].

Adjoint of a matrix

The adjoint of A [often denoted (adj A)] is defined as adj A = [A';]. In words: the adjoint
is the matrix whose elements are the cofactors of the transpose of A.

=

In this appendix we will look at inverses for square matrices only. This meons that if we are dealing with the
coctfickent matrix for an equation system, as in (A 2) of (4.3), there are the same number of unknowns as
equations in the system. There are more advanced concepls of “pecudo” inverses for nonsquare matrices, but
they need not concern us o this point.
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Properties of determinants

. A=A

. If any row or column of A contains all zeros, [A] = 0.

. Multiplication of all the elements in any row or column of A by a constant, &, creates a
new matrix whose determinant is & |A|.

4. If A* is generated from A by interchanging any two rows or columns of A, [A*| =

= |Al.

a. If any two rows or columns in A are equal. [A] = 0.

b. If any two rows or columns in A are proportional, |A| = 0.

5. a ¥ aidq; = 0 (where i & ') and
=i

Lad pd —

b. i aiAg = 0 (where j & §).
i=l

In words: evaluation of a determinant using alien cofactors — elements from row 7 and
cofactors from some other row (which is what makes them alien) or elements from column
7 and cofactors from some other column — always yields a value of zero. This is not difficult
1o show,

n
I. Use ay and Ag; (i # k) and write out the alien cofactor expression ¥ a;Ay;.

=1

2. Replace row k in & by row i; call this matrix A. Then |pi| = (0 [from (da)).

3. Find ‘.i| which we know to be O [from (1)], by ordinary expansion across its row &;
this is .i! = }i aAy;. But this is exactly the alien cofactor expression in (i), thus

demonstrating (3a) for ' = k.

Inverse

The general expression for an inverse builds on the preceding concepts. For
Au An o A
A Ap - Ap

the »n = n case, where adjA = form the product

LA A A

- r n n A
Z T |_|:1"¢|‘I E E.I]_,'A]J: LR E (!]_,'_-i”_r'
=1 Ji=| i=1
: " " ! "

. YayAy ¥ axhg s E Ay )
AadjiA) = | =1 i=l i=l — the reason for doing
" ) " - " .

E :r,.,_r-Au E E.Iﬁ._,'A]J: LR E (!ﬁ._,'_-i”j
= i= = J

this will soon be apparent. Each of the on-diagonal elements in this prod-
uct is |Al, found by cofactor expansions — across each of the rows in turm;
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each off-diagonal element in the product is O because it is an expansion by alien cofactors,
Therefore

(A O ... 0
0 |& - 0

A (adjA) = R = |A|Ly. 50 A(l/[AD{ad] &) = 1, meaning that
LI | RN

A7 =1/ A} (adjA) .

— e o
soalar (nxn main

Linear combinations; linear dependence and independence

A more general requirement for nonsingularity of A involves the concepts of linear depen-
dence and independence. A complete examination of this topic. including the associated
vector geometry, is beyond the level of this discussion, but the main ideas are important. We
consider only the case of square matrices because our interest is in the inverses of the matri-
ces associated with input—output models.” Consider a series of i vectors, either columns or
rows: we deal with columng simply for illustration. Let the columns of an # = » A matrix be
denoted 2\, Y™, .., a)"'. Multiply each column by a scalar and add, generating another
n-element column vector:

M
Il feh ] "
sy +aady +-o +agd) =eor E .a-.-n:” =
=1
x e : i L o [l { '
The vector ¢ is called a linear combination of ai' "Lal™ . al™ If novall the scalars in
n
. - . . y A i
the linear combination are zero and if ¢ = 0 — thatis. 3 sal™ =0-n", 2!”, . o
i=1 B

are said to be finearly dependent. Using three-element vectors for illustration, suppose nf""'

1 517 1
is a linear combination of a,” and a5”. For example, letA = | 2 4 16 [:a" = | 2
v 5
5
al’ = | 4 |and2a)” + 3al" = aY'. Then, equivalently,
7

"_aﬁ” - 3:13” +i=1 :la!,.” =1

and the vectorsal . al”'. al™" are (by definition) linearly dependent. Whenever some a}"'
can be expressed as a linear combination of the other (n — 1) A vectors, the » vectors

a)", a)".. ... a)" are linearly dependent. The important fact isthatif A contains linearly

fusra)

Miller, Ronald

* In input—output work, we are usually concerned with finding the inverse of (T — &), We usc & gencric ~A"
matrix in the discussion in this wppendix for simplicity of cxposition.
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dependent columns, A is singular.” This provides an additional case 1 which |A| = 0; it
supplements the relatively simpler observations in (2). (4a), and (4b). above. Moreover,
all of this holds true if “rows"” are substituted for “columns” throughout the discussion: in
particular, if A contains linearly dependent rows, [A| = (.

"
On the other hand, if the only scalars for which ¥ sa!™ = 0 holds are (all) 5; = 0,

i

=1
the vectors are termed lnearly independent, These ideas are used to define the important
concept of the rank of 2 matrix, p(A). In a nutshell, the rank of A is the number of linearly

indanandant e fae cnliimnet 10 A And oo of ArAY w0 A de noncinanlar Coesentar
MOSPENGon MOWs (O CHimns) I AL ARG 500 0 A = . Al NONEINZUEL Lompuied

programs find ranks of matrices with very little effort.

One immediate application of these observations can be found with the completely closed
input—output model, where i'A = i, As a consequence i'(1 — Ay = 0V [the rows of (1 — A)
are linearly dependent], |l — A)| = 0, and no Leentief inverse can be found.

Thus A~! can be found only when |A| # 0. This 1z similar to the problem with “0”
in ordinary algebra; you cannot divide by it (the reciprocal of 0, 1/0, is not defined).
The matrix A from (4.2} is nensingnlar; namely

21 =} I -1
A=|:S_.]':|ﬂl'ld A =|:_5 2:|

.
which the reader can easily check. An example of a singular matrix is C = |: ; 142 :|

where |C] = 24 — 24 = 0 (proporiional rows and columns). There is no mairix by

01
Since we have found A~' for the equations in (A 2), the solution is exactly

e=ate=[ 2 ][] (3]

The reader can easily check that xj = 4 and x> = 2 are the {only} solutions 1o the two
equations in {(A.2),

An important fact about inverses is that, for nonsingular matrices M and N that are
conformable for multiplication. (MN) -l =N"M

}
which C can be pre- or postmultiplied to generate I, = |: L ] \

A7 Diagonal Matrices
Identity matrices are examples of diagonal mmrices. These are always square, with

elements on the diagonal from upper left to lower nght and zeros elsewhere. In general.

B Ilustration and proodf of ihis statement is beyoad the level of this text. The interested reader should turn to any
good book on lincar alpebra,
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an i x n diagonal matrix is

dy 0 --- 0

=
el
=

S

A useful notational device is available for creating a diagonal matrix from a vector.
xy
Suppose x = | x3 |:then the diagonal matrix with the elements of x strung out along
X3
its main diagonal is denoted by putting a “hat™ over the x (sometimes “{" and “)” are
used to bracket the x), so

x 00
i=ix)=| 0 x 0O
0 0 a3

A hat 1s also used with a square matrix to indicate the diagonal matrix formed from
the square matrix when all off-diagonal elements are set equal to zero, and an upside
down hat is used for the square matrix that is left when all diagonal elements are set
equal to zero. For example, using () from above,

200 004
O=|010)and O=|102
00s 340

One useful fact about diagonal matrices is that the inverse of a diagonal matrix is
another diagonal matrix, each of whose elements is just the reciprocal of the original
element. For X this means

ljogy 0O 0 "|
ol _ .
X = 0 1/xa O
0 0 ]fx;J

and the reader can easily check that in this case

"

-

Il

s

]

i)

Il

[

)

Il
2 0 -
[=1 =]
Ll ==

Notice also that transposition of a diagonal matrix leaves the matrix unchanged: x" = x.

When a diagonal matrix, ). posfmultiplies another matrix. M. the jth element in
D). d;. multiplies all of the elements in the jth colwmn of M. and when a diago-
nal matrix premultiplies M. o multiplies all of the elements in the jth row of M.
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For example,

3 di 0 0 — 2y dr 3dh
T | ddy 6ds 1244

and

RHREEEEA

Putting the facts about inverses of diagonal matrices together with these observations
about pre- and postmultiplication by a diagoral matrix, we see that postmultiplying M
by D~ will divide each element in column j of M by dy, and premultiplying M by D™ '
will divide each element in row j of M by ;.

A% Summation Yeclors

If M is postmultiplied by an r-element column vector of 1's. the results will be an
iy

m-element column vector containing the row sumes of ML IF M is premultiplied by an
m-element row vector of 17s, the result will be an n-element row vector containing the
ceddimn sums of M. For example,

[ié 132} : =[;3] and [ 1 l][ié |32i|=[6 7 15]

Usually, a column vector of 1's is denoted by 1. and so a corresponding row vector is i’
{sometimes 1 or e is used in place of i). These are summation vectors.

A Matrix Inequalities

A more exact characterization of vectors and matrices is often needed for more advanced
matrix algebra statements when inegualities are involved. Using vectors as an example.
x = 0 (x is “non-negative.” meaning x; = 0 for all it note that this allows x = 0.
x = {0 (x is“semipositive.” meaning x = 0 and x = 0; that is. at least one x; > () and
x 2= 0 (x is “positive,” meaning v; = 0 for all /)." The definition of “semipositive” is
needed for cases in which x = 0 must be ruled out. The same comparisons can apply
to matrices. Also, the same notation can be used to compare any pair of vectors or
matrices with the same dimensions — x = ¥, x = ¥y, and X > ¥, und so forth.

7 This is particularly wseful in defining direct input cocfficicnts matrices {technicy] cocfficients mutrices) in
input—output models.

5 Aﬁgmmiv: nelations have been used (for example, in Lancaster, 1968, p. 250, and Takavama, 1955, p. 368)
We follow the notation used in Dietsenbacher (1954 and many subsequent pablicstions),
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A0 Partitioned Matrices

Often it is useful to divide a matrix into swbmatrices, especially if there is some logical
reason to distinguish some rows and columns from others.” This is known as partition-
ing the matrix: the submatrices are sometimes separated by dashed or dotted lines. For
example, we might create four submatrices from a 4 x 4 matrix A, as

gy @iz A3 dig
dzp d23 i da |_r’lz| »"L|1—|

a3l @3 a3y Ay An Am;
I ] 33 flg4

A
(=4}

In the discussion of linear combinations {section A6}, we viewed A as composed of

= i Ich i
a series of column vectors, A = [al "oan g ] It can equally well be
S
l
ri
aj
" " r =
thought of as a “stack” of row vectors, ar! —namely, A =
irl
L a; |

AT Mudtiplying Partitioned Matrices

If matrices are partitioned so that submatrices are conformable for multiplication. then
products of partitioned matrices can be found as products of these submatrices. For
example, suppose that in conjunction with A, above, we have

by bin bia
b1 b bm By Bpis

BE = =

(hied) by bsz b3 By B
by by by

Then
Ay A By Bz ApBp+ApBny ApBp +ApBa
AB = £

#x3 1Ay Ax| |Bn Bn AnBp+AnBy AnBi+AnBn

{The reader can check that all conformability requirements for addition and for
multiplication are met. )

¥ An example is in the representation of intemegional or multiregional input-outpat models.
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A.10.2  The Inverse of a Pariitioned Matrix
Inverses of partitioned matrices play an important role in many input—output repre-

E F
Ipepl [ im—p)
sentations. Given a partitioned n » n matrix A =
G H
(=) [{m—pisin—pi]
(note that E and H are square). elements of the inverse can be similarly partitioned
8 T
ey Ty — oyl
{p%p) [ (n—pm}
as AT = l MNotice that submatrices in corresponding
U v
|[im—prhsp) [in—pisin—pi]

locations in the original matrix and the inverse have the same dimensions. This means
that

| 1]
E F —| 5 T—I (=) [p=in—pi]
—I=

G H U v
J J [in—p) =] lin—pi=(n—pi)

That is, the product (the identity matrix) can also be partitioned similarly. This matrix
statement can be expanded into four mafrix equations, using the usual rules for matrix
multiplication and matrix equality. These matrix equations are

(ES+FU =1 (3 ET+FY =0

(2)GS+HU =0 (4)GT+HV =1 (Ad)

(The reader can easily check that all matrices are conformable for the multiplications
and additions in which they are involved.)

Assume that E~! can be found; then (1) vields 8§ = E-{I-FU. Putting this into (2},
after considerable rearrangement, gives U= —(H — GE'F)~'GE~". The Important
fact is that U is expressed as a function of only the known matrices E, F. G, and H;
and once U is found, it can be substituted back into the expression for 8. Similarly,
equations (3) and (4) can be solved to vield T = —E-'F¥andV = {H- GE"'F)-.
As with the first pair of equations, ¥ is a function of known matrices only, and once V
is found, it can be used to find T. Collecting these results,

S=EYI-FU) T=-E'FV
U=—-VGE~! V=(H-GE 'F)! (A.S)

In this way, the inverse of an n = n matrix is found from the inverses of two smaller

matrices — E and v —along with a number of matrix multiplications.
(st ltn—p=in—pi]
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An alternative set of results can be derived if one begins with the assumption that
H-!is known. These are
S=(E-FH 'G)”' T=-sFH"'
U=-H'GS YV=HYI-GT) (A6
Again, inverses of two (different) smaller matrices are required - 8§ and H .
(sl lin—pl=(n—pi]

For A matrices with particular structures the solution via (A.5) or (A.0) may be
particularly simple. Here are several alternatives that arise in input—output models.

E 0 "|
1. IfA = then, using either (A.5) or (A.6), it is easily established that
0 H J
ET 0
Al = s only the two smaller inverses, E=' and H™!, are needed.
0 H-!
E n"| E' 0 "‘
2. In the even more special case when A = AT = .
0 1 J

0 1

E o"| E-! u"|

3 IfA = Jthen A~ = .
G IJ —GE™! [J

The interested reader can easily construct additional variations on these special cases.
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